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Abstract

In deep learning, the perspective on memorisation of training examples is undergoing a
paradigm shift. Previously linked to overfitting and poor generalisation, memorisation
is now seen both as beneficial when it enhances deep neural networks’ generalisation
capabilities and as concerning when it comes to specific examples that should not
be memorised. This shift raises questions about when memorisation is beneficial,
what models memorise and should memorise, and how memorisation is implemented
internally. Although these questions might be relevant for deep learning problems in
general, I consider them to be particularly relevant for language learning and the field
of natural language processing (NLP). After all, language itself requires both syntax-
driven, generalisable meaning compositions and memorisation capabilities, thanks to its
dichotomous nature of being both compositional – in terms of freely generated language
– and non-compositional – due to the pervasiveness of fixed formulaic sequences.

This dissertation is divided into two parts, each studying memorisation in transformer
models from a different angle. Within each part, I focus on the data first and then
elaborate on model-internal mechanisms for memorisation. The first part examines
memorisation broadly, identifying which examples require more memorisation, whether
memorisation aids generalisation and where memorisation occurs in multi-layered models.
Firstly, using the task of translation, various source-target language pairs and graded
memorisation metrics, examples are placed on a ‘memorisation map’ to explore features
predictive of high memorisation and their impact on model performance. Secondly,
using classification tasks, memorisation localisation is examined at the level of the layers.

In the second part, I approach memorisation through the lens of natural language’s
compositionality, focusing on idioms as prime examples of non-compositional phrases
requiring memorisation in neural networks. Using translation tasks, I analyse how
models acquire idiom translations over the course of training while also monitoring
models’ compositional abilities. I then examine pretrained translation models for various
source-target language pairs, separating idiom translations into paraphrases and word-
for-word translations, and analysing the role of transformer’s attention and changes to
the hidden states in translating idioms non-compositionally.

By combining insights from data analysis and internal mechanisms, this dissertation
examines the link between memorisation and generalisation. I firstly show that memori-
sation is not a mysterious phenomenon, but is predictable based on examples’ features.
Secondly, I establish that model-internal mechanisms for memorisation emerge in a dis-
persed manner: memorisation is implemented over a range of layers, and generalisation
and memorisation capabilities are intertwined. Finally, I demonstrate that memorising
certain training examples can aid generalisation, but also that models still face challenges
with both compositional generalisation and non-compositional memorisation.
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Lay Summary

When learning a language, we want students not to memorise too many specific sentences
encountered in the course material. Instead, they should use the examples to learn the
grammar and build up their vocabulary so that they can create new sentences in new
contexts when speaking the language in the world. When humans use the meanings of
words as building blocks and compose them to create sentences, we refer to that skill as
compositionality. Yet, in some cases, memorising sentences from the course material is
necessary to succeed; for instance, if someone learning English encounters the idiom
“kick the bucket” for the first time, which means that someone has passed away. A
phrase like that is what we call non-compositional, because the meanings of the words
cannot be used as building blocks to understand the meaning of the phrase. As is the
case with human students, when computational models learn language, we also do not
want them to memorise too many specifics about the course material unless it will help
the models understand the language after their initial training phase.

This thesis focuses on models’ memories. I examine them in two separate parts,
discussing model memories in general and memories of idioms in particular. In the
first part, I firstly look at all of the data presented to a model as learning material
when it learns to translate text, to study which of the examples are memorised the
most, and whether this helps the model when presented with new examples after the
training phase. Secondly, I look at the model itself, which consists of many parts and
is organised in a layered way. Where in all of the model’s layers does it memorise an
example if we force the model to learn the wrong label? For instance, if we train the
model to predict that “I love that you found a new job” expresses negative sentiment.

In the second part of the thesis, I focus specifically on the skill of compositionality
and models’ memories of idioms. I train models to translate text, monitoring when
they learn idioms and how well they can build sentences by just treating the words as
building blocks. Later on, I again look at the models themselves to understand which
parts are the most important for memorising paraphrases of idioms during translation.
For instance, if the model has to translate “My grandfather has kicked the bucket” as
“Mijn grootvader is overleden” in Dutch, which internal mechanisms contribute to that?

Together, these experiments firstly show that it is quite predictable which sentences
from the training material the model will or will not memorise. Secondly, they reveal that
models’ memories are not stored in one specific location but across many components
spread throughout the model. Finally, they indicate that memorising certain examples
from the training material can help translation models after the training phase. At the
same time, when it comes to idioms, models have not memorised them well enough.
Idioms are often translated word for word rather than being paraphrased, which leads
to translation errors.
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Chapter 1

Introduction

The field of deep learning is showing evidence of a paradigm shift when it comes to the
role of memorisation in the development of computational models. Traditionally, in
machine learning, memorisation was intricately linked to overfitting and associated with
a lack of generalisation capabilities. In 1995, Dietterich (1995, p.326) already discussed
the concern of “fit[ting] the noise in the data by memorising various peculiarities”, and
the development of active schemes to combat overfitting is still alive and kicking (Bejani
and Ghatee, 2021). Yet, in recent years, deep neural networks trained on ever-growing
datasets have shown that strong generalisation to evaluation data can coincide with
the memorisation of training data, a situation referred to as benign overfitting (Bartlett
et al., 2020). This shift has become particularly salient within the field of natural
language processing (NLP) with the rise of large language models (LLMs), for which
generalisation and memorisation capabilities appear to increase together (Carlini et al.,
2022; Biderman et al., 2023). It has been suggested that excelling at tasks whose data
is characterised by long-tailed distributions simply requires memorisation of atypical
(but correct) training examples for optimal generalisation capabilities (Feldman, 2020;
Feldman and Zhang, 2020; Zheng and Jiang, 2022), and LLMs are expected to memorise
factual information about the world (Lee et al., 2022; Zhao et al., 2024b).

If memorisation is not necessarily something to combat, that introduces a range of
new questions, such as: (When) is memorisation beneficial? What do LMs memorise,
and what should they have memorised? Which neural mechanisms enable memorisation,
and how can we improve those mechanisms? While these questions might be relevant for
deep learning problems in general, I consider them to be particularly relevant for NLP.
Language learning requires modulating analytic processing and memorisation capabilities,
thanks to natural language’s dichotomous nature of being both compositional and
non-compositional. It is compositional in terms of freely generated language, and
non-compositional due to the pervasiveness of fixed, or formulaic, sequences, such as
proverbs and idioms (e.g. Svensson, 2008).

1



Chapter 1. Introduction 2

In this dissertation, I investigate memorisation in computational models of language,
both as a general phenomenon and through the lens of formulaic sequences, by using
non-compositional idiomatic expressions for memorisation case studies. I also study
the relation between memorisation and generalisation, to better understand to what
extent they are at odds with one another. In this section, I first introduce the main
topics under discussion to the reader, by providing an overview of the current NLP
landscape in terms of memorisation studies (§1.1) and laying out how memorisation
and compositionality are connected for natural language (§1.2). This is followed by a
thesis outline (§1.3) detailing the research questions under investigation and a summary
of my findings. Lastly, §1.4 lays out how the chapters relate to my published articles.

1.1 Memorisation in NLP and beyond

Deep learning and the pretraining of deep neural networks (as opposed to training them
from scratch) were catalysts for investigations concerning memorisation, particularly in
the last five years. But to the one label of ‘memorisation’, many different meanings and
interpretations have been assigned. I identify at least four distinct, albeit related, ways
in which memorisation has been discussed that are relevant to keep in mind throughout
the thesis: Firstly, in deep learning articles, in general, memorisation has been used as
a synonym for (1) training set interpolation (e.g. Zhang et al., 2017; Arpit et al.,
2017; Chatterjee, 2018) – i.e. memorisation of entire training sets – and (2) as a model
descriptor, used to distinguish memorising networks from generalising networks, based
on how well they generalise to evaluation data. Memorising networks have been trained
on purpose, using manipulated data (e.g. Morcos et al., 2018), but also naturally emerge.
For instance, during grokking, networks interpolate the training set, but still morph
from memorising networks into generalising networks through training beyond the point
of training loss convergence (Power et al., 2022). The observation that training set
interpolation can occur in generalising networks was the one that caused Bartlett et al.
(2020) to first coin the term benign overfitting, and instigated work in understanding
the circumstances under which overfitting is, in fact, benign (Sanyal et al., 2020). Work
in this direction is of a more theoretical nature, often adopting computer vision (CV)
tasks. It is less prominent in contemporary NLP, because the vast sizes of pretraining
corpora do not allow LLMs to fully interpolate that data. Nonetheless, it is relevant to
our discussions because this work sets the stage for the question of the extent to which
memorisation and generalisation are at odds with one another.

At a more fine-grained level, (3) data memorisation of individual training examples
has been discussed, and this work is more prominent in contemporary NLP studies
where models memorise only a subset of the (pre)training data. Work in this direction
has focused on developing metrics to quantify memorisation, understanding which
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models or training techniques yield more data memorisation (e.g. Carlini et al., 2022;
Mireshghallah et al., 2022; Biderman et al., 2024), and analysing what types of examples
are memorised (e.g. Carlini et al., 2021; Zheng and Jiang, 2022; Zhang et al., 2023).
Data memorisation can be considered concerning, benign or beneficial depending on
what is memorised. Verbatim memorisation of copyright-protected text (Chang et al.,
2023) or personally identifiable information (PII) (Huang et al., 2022), for instance,
is concerning. Other types of verbatim memorisation can be benign (e.g. in case of
canonical text from copyright-free news headlines or wiki entries, Carlini et al., 2021),
and memorisation of factual information (Geva et al., 2023) or atypical but accurate
examples (Zheng and Jiang, 2022) is beneficial.

Finally, the (4) implementation of memorisation in deep neural networks has
drawn attention, resulting in work studying how memorised examples affect models
internally. Some articles focus on pinpointing individual layers or neurons that encode
memories (e.g. Dai et al., 2022; Chang et al., 2024; Stoehr et al., 2024), whereas
others mean to provide a more comprehensive explanation of how multiple layers or
multiple layer subcomponents (i.e. transformer’s self-attention and feedforward modules)
cooperate to retrieve memories (Haviv et al., 2023; Geva et al., 2023). In addition to
localising memories, there is work on editing them (e.g. De Cao et al., 2021; Meng
et al., 2022, 2023), which often focuses on the feedforward modules as those are assumed
to encode models’ memories following seminal work by Geva et al. (2021). To this
day, however, it is unclear whether memories tend to be stored in specific layers of a
model; there are conflicting results from both CV and NLP, where there was initially
a consensus that deeper layers of deep neural networks were more involved in storing
memories than earlier layers (e.g. Stephenson et al., 2021; Cohen et al., 2018; Dai et al.,
2022). More contemporary work, however, puts more emphasis on earlier layers and the
fact that memories may be encoded in a distributed rather than a localised manner (e.g.
Geva et al., 2023; Haviv et al., 2023; Maini et al., 2023).

This brief overview of the literature demonstrates the multi-faceted nature of memo-
risation, and I further elaborate on it in §2.2. Paradoxically, memorisation is desirable
for some datapoints and undesirable for others. Developing computational models of
language, therefore, involves both encouraging memorisation where needed, and favour-
ing learning strategies that generalise, otherwise. In the thesis, I contribute to a better
understanding of both data memorisation and the implementation of memorisation,
using datapoints that models do memorise, while also noticing that for other examples
(specifically those containing formulaic language) models lack memorisation. In the next
subsection, I further elaborate on the connection between memorisation and formulaicity.



Chapter 1. Introduction 4

John

kicked

the x

John

schopte

de x

opa

stierf

compositional processing non-compositional memorisation

grandpa

kicked

the bucket

== ==

Figure 1.1: An illustration of the relation between compositionality and memorisation:
compositional processing of “<person> kicked the <object>” explains how language can
be used productively. Yet, exceptions exist where phrases need to be memorised as one unit
instead of being decomposed according to the syntax, as is the case for “grandpa kicked the
bucket”. This affects NLP tasks, such as translation, as demonstrated in the illustration
using Dutch translations.

1.2 Memorisation and compositionality

Compositionality is a property that a language may have or may lack. Many arguments
for why natural languages would have this property have been put forth, among which
are the systematicity and productivity of natural languages (Fodor, 1987), but also their
learnability and intersubjectivity (Pagin and Westerståhl, 2010b). Speakers of a natural
language can produce sentences they have never heard before by recombining words or
phrases they know in a new way, and other speakers of that language would understand
those sentences, thanks to the compositionality of language. Partee (1984, p.153)
proposed one of the most well-known definitions of the principle of compositionality:

The meaning of an expression is a function of the meanings of its parts and of the
way they are syntactically combined.

At first glance, this definition may suggest that language is a little bit like arithmetic:
we can determine the meaning of a linguistic expression based on the meanings of the
inputs (words) and the operators and structure (syntax) of an expression, as visualised
in Figure 1.1 for “John kicked the <object>”. The same operators describe the meanings
when inserting different words, such as “ball”, “bucket”, “apple” or “bird”. To understand
why that is somewhat naive, let us first consider a thought experiment.

A compositionality thought experiment Think of a story you recently read in the
newspaper. Now imagine a pupil from a different time and place who knows little about
the world’s celebrities or historical events. They do not speak your language, but have
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learnt the language of this story by memorising the dictionary and a grammar guide.
They might grasp much of the story because they can use the words’ meanings and the
structure of the text, as they taught themselves. Still, they will unavoidably run into
parts that cannot be explained by stringing together the meanings of individual words.
Numerous issues come to mind, but the primary one is that words do not function in
isolation: At the extra-sentential level, contextuality shapes meaning beyond what a
dictionary can convey – cultural, temporal, and situational factors all play a role. At the
intra-sentential level, words do not function in isolation either since many expressions
derive meaning from being a part of a fixed group, e.g. for prototypical formulaic
multi-word expressions (“stealing my thunder”), but also named entities (“Purgatory
Pool”, an English lake), or even entire quotes from Shakespeare’s plays. The pupil
would struggle to understand or translate our text without the wider context and more
knowledge about such groups of words. As Fillmore et al. (1988, p.504) notes: “an
idiomatic expression or construction is something a language user could fail to know
while knowing everything else in the language”. This is where non-compositionality
comes into play. Returning to Figure 1.1, our hypothetical pupil might understand
the literal meanings, but would likely miss the non-compositional reading of “grandpa
kicked the bucket” as “grandpa passed away”.

In spite of such counterexamples, the fact that natural language is largely compo-
sitional is undeniable, and this property has long intrigued NLP researchers. Ideally,
computational models of language would mirror language’s compositional nature. Stud-
ies that analyse whether NLP models do so refer to the type of evaluation they perform
as compositional generalisation evaluation.1 The most appropriate definition of
compositionality has been widely discussed in linguistics and the philosophy of language,
because of the many counterexamples that exist in natural language (Zadrozny, 1994;
Horwich, 2001; Pagin and Westerståhl, 2010b; Szabó, 2012; Baggio et al., 2012, i.a.).
These definitions vary in strictness to accommodate counterexamples; I return to this
literature and related work on compositional generalisation in §2.3.1 and §2.3.2, respec-
tively. My goal is not to resolve this debate, but to emphasise that not all of natural
language is compositional. In many ways, NLP models are like our hypothetical pupil:
trained on decontextualised text, broken up into words. As NLP researchers, we assume
end-to-end neural training on text corpora allows models to capture the richness of
language, but whether and how it does remains an open question – one to which this
thesis contributes.

The pervasiveness of formulaicity Compositionality explains how infinitely many new
sentences can arise from a finite syntax and semantics. However, its importance may be

1Although the term was not used until 2018 by Loula et al., the concept had been used in cognitive
science decades prior. Systematic generalisation and compositional generalisation are sometimes used
interchangeably, with the latter now being more commonly used than the former.
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overstated when considering actual language use. Of all possible sentences, there is only
a small proportion that native speakers would actually utter (Pawley and Syder, 1983),
partly due to the prevalence of formulaic sequences, defined by Wray (2002, p.9) as:

A formulaic sequence is a sequence, continuous or discontinuous, of words or other
elements, which is, or appears to be, prefabricated: that is, stored and retrieved
whole from memory at the time of use, rather than being subject to generation or
analysis by the language grammar.

To account for the pervasiveness of formulaic sequences alongside compositional text,
dual-system models have been proposed (Wray, 1992), suggesting that compositional
processing in the brain competes with holistic processing, which relies on prefabricated
strings stored in memory. Systems of this kind have been supported by cognitive
evidence in both healthy subjects (e.g. Sidtis et al., 2018) and clinical populations (e.g.
Sidtis et al., 2009; Zimmerer et al., 2016; Torrington Eaton and Thomas, 2024), pointing
towards the presence of different neural substrates for the two types of processing. The
prominence of holistic processing means that language production and comprehension
lean heavily on humans’ memory, and motivates taking a closer look at memorisation
during computational modelling of language, as well. While memorisation is not
sufficient for adequately capturing the non-compositional nature of language – i.e. it
does not actually explain all issues outlined during the thought experiment above,
or compositionality problems listed in the literature (Pagin and Westerståhl, 2010b)
– it is a necessary component of language learning, in humans and machines alike.
When exposing our pupil to tasks that involve natural language understanding, such as
translation, memorisation is needed on top of compositional processing, to memorise
that an idiom needs to be translated as a unit instead of decomposing it according
to syntax (as illustrated in Figure 1.1). Formulaic language has been the proverbial
pain in the neck of NLP for decades because models have struggled with acquiring
non-compositional meanings (e.g. Sag et al., 2002; Rayson et al., 2010; Shwartz and
Dagan, 2019). A wide body of research has been dedicated to understanding to what
extent computational models can adequately detect and understand formulaic phrases,
and use them in downstream tasks. I return to related work in this direction in §2.3.3.

1.3 Thesis outline and research questions

In this thesis, I will first focus on memorisation (and generalisation) in generic terms
(Part I), followed by a case study around the (non-)compositional nature of natural
language (Part II). In the process, two types of tasks will be used: firstly, the sequence-
to-sequence task of neural machine translation (NMT). NMT models are trained on
handcrafted or automatically sourced training corpora representative of the natural
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variation observed in language, and compositionality is traditionally well-studied and
motivated for MT (Rosetta, 1994; Janssen and Partee, 1997; Janssen, 1998). When
working with idiomatic expressions, NMT is of particular interest because different
languages have very different formulaic sequences, ensuring that idiom translation must
involve memorisation. In addition to NMT, I also use generic language understanding
classification tasks in the scenario where higher control over the training data is desired.
All analyses adopt the transformer architecture (Vaswani et al., 2017), albeit in different
setups, varying training set sizes, model sizes and whether or not the model is pretrained.
In §2.1, I review the fundamentals of this architecture and the tasks and models that
are considered throughout the thesis.

Together, the different chapters from the two parts of this thesis will contribute to
answering the following research questions:

RQ1. What characterises memorised examples?

RQ2. Which model-internal mechanisms enable memorisation?

RQ3. To what extent are memorisation and generalisation at odds with one another?

Part 1. Memorisation in transformer This first part focuses on memorisation in
generic terms: within a dataset, some examples require more memorisation than others.
Which examples do models memorise, and where in these multi-layered networks can
memorisation be localised?

1. The data viewpoint (chapter 3): For the task of NMT, I study data memorisation
to understand what types of examples transformer memorises most. Adopting
graded memorisation metrics (as opposed to binary ones), all training examples
are positioned on a ‘memorisation map’ for five source-target language pairs,
comprising a resource of memorisation metrics which could be used by future work.
I investigate which surface-level features are predictive of high memorisation scores,
identifying that these are mostly datapoints showing natural variation, and are not
simply noise (RQ1). Features that are predictive of memorisation in one language
predict memorisation in other languages well, too. A brief intermezzo is included,
foreshadowing findings discussed in Part II, to establish that examples with
formulaic phrases are memorised less than control stimuli. Finally, I establish that
examples with high memorisation scores are beneficial for models’ generalisation
to unseen data (RQ3).

2. The model viewpoint (chapter 4): Afterwards, I shift focus to localising memo-
risation in transformer. To do so, four LMs, four localisation methods, a new
visualisation technique (centroid analysis), and twelve natural language classifi-
cation tasks are used, for which a subset of the labels is perturbed to perform
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layer-wise memorisation localisation when fine-tuning the LMs. This controlled
setup ensures that the examples under investigation are, in fact, memorised. I
identify that memorisation cannot be localised to individual layers, but is a co-
operative process of many layers, through which memorised examples gradually
become more distinct (RQ2). Contrary to what previous work suggests, models’
deepest layers do not play a special role in that. Which layers are most involved
is, however, dependent on the task being inspected, and task difficulty correlates
with where memorisation is located most.

Part 2. (Non-)compositionality: a memorisation–generalisation case study In the
second part, I shift focus to the topic of compositionality, both evaluating compositional
generalisation and the processing of idiomatic expressions. How does this reflect the
tension that exists between memorisation and generalisation, and how does memorisation
of idioms affect models internally?

1. Evaluating (non-)compositional generalisation (chapter 5): In this chapter, I
focus on compositional generalisation first, and memorisation of idioms second.
Compositionality is often studied using artificial datasets, in which a strict,
bottom-up approach to composing meaning is guaranteed to be successful. I,
instead, redefine three tests from the literature for the evaluation of the (non-
)compositionality of transformer NMT systems trained on natural data. I focus on
one source-target language pair, introducing new evaluation data and adopting it
for our tests. The results indicate that NMT systems, paradoxically, both do not
exhibit enough compositional generalisation when it comes to robustness to input
perturbations, while also being too compositional in other cases, for instance, in
the case of idioms (RQ3). During training, idiomatic translations are acquired in
two phases: an overgeneralisation and memorisation stage. Yet, for many idioms,
NMT systems remain in the overgeneralisation stage if the model has finished
training, exemplifying one way in which memorisation and generalisation are at
odds with one another.

2. Mechanisms for idiomatic translations (chapter 6): Afterwards, I solely focus on
idioms, analysing how transformer NMT systems for seven source-target language
pairs translate them, establishing that they are often translated overly compo-
sitional. To determine this, a heuristic way to distinguish (non-compositional)
paraphrased translations from (compositional) word-for-word translations is lever-
aged. I point out that frequency influences how idioms are translated (RQ1). This
is followed by a range of analyses that study transformer’s internal mechanisms
that enable paraphrased translations of idioms (RQ2). I discuss the role of the
encoder’s attention, the encoder-decoder cross-attention and hidden states’ trans-
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Figure 1.2: An overview of how the different chapters address the three central research questions,
both for memorisation in general (in blue) and for our (non-)compositionality case study (in red).

formations over layers. Key findings are that when paraphrasing figurative idioms,
transformer’s encoder is found to group words within the phrase more strongly
compared to literal phrases, and that transformer’s decoder processes the input in
a way that is partially disconnected from the encoder. In line with results from
chapter 4, memorisation is found to be a gradual process in which many layers
cooperate to set idiomatic examples apart.

Figure 1.2 succinctly summarises the contributions and conclusions from the different
chapters for each of the research questions under investigation. I conclude that although
transformer models retain substantial information from their training data – which is
useful for generalisation to unseen examples – they still fall short in capturing formulaic
language, and do not adequately process inputs compositionally, where possible, and non-
compositionally, where needed. Although memorisation mechanisms do arise naturally
as a cooperative process of transformer’s many layers, these mechanisms are insufficient
for many idiomatic expressions. In chapter 7, I will further reflect on these findings and
propose directions for future work.

1.4 Published works

The chapters in this thesis are primarily based on the following papers:

• Chapter 3: Verna Dankers, Ivan Titov, and Dieuwke Hupkes. 2023. Memorisation
cartography: Mapping out the memorisation-generalisation continuum in neural
machine translation. In Proceedings of the 2023 Conference on Empirical Methods
in Natural Language Processing, pages 8323–8343
Dieuwke Hupkes (DH) and Ivan Titov (IT) provided supervision and contributed
to conceptualisation and deciding on the methodology. DH and IT contributed to
paper writing through reviewing and editing. DH contributed to data analysis. I
developed the software, executed experimentation, analysis and visualisation, and
wrote the paper. The work was partially conducted during an internship at Meta.

https://aclanthology.org/2023.emnlp-main.518/
https://aclanthology.org/2023.emnlp-main.518/
https://aclanthology.org/2023.emnlp-main.518/
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• Chapter 4: Verna Dankers and Ivan Titov. 2024. Generalisation first, memorisa-
tion second? Memorisation localisation for natural language classification tasks.
In Findings of the Association for Computational Linguistics ACL 2024, pages
14348–14366
Ivan Titov (IT) provided supervision, contributed to conceptualisation, deciding
on the methodology and paper reviewing and editing. I developed the software,
executed experimentation, analysis and visualisation, and wrote the paper.

• Chapter 5: Verna Dankers, Elia Bruni, and Dieuwke Hupkes. 2022a. The
paradox of the compositionality of natural language: A neural machine translation
case study. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 4154–4175
Dieuwke Hupkes (DH) and Elia Bruni (EB) provided supervision and contributed
to conceptualisation and deciding on the methodology. DH trained the NMT
systems evaluated in this chapter, contributed to the manual data analysis and
paper writing. EB contributed to paper reviewing and editing. I created the
new evaluation datasets, developed the software for the analysis and visualisation,
executed experimentation and contributed to paper writing.

• Chapter 6: Verna Dankers, Christopher Lucas, and Ivan Titov. 2022b. Can
transformer be too compositional? Analysing idiom processing in neural machine
translation. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 3608–3626
Ivan Titov (IT) and Christopher Lucas (CL) provided supervision and contributed
to conceptualisation and deciding on the methodology. CL supervised the data
collection. IT contributed to paper reviewing and editing. I developed the software,
set up the data collection infrastructure, executed experimentation, analysis and
visualisation, and wrote the paper.

In addition to the articles listed above, I was the first author of the following publications
throughout my PhD:

• Verna Dankers∗, Anna Langedijk∗, Kate McCurdy, Adina Williams, and Dieuwke
Hupkes. 2021. Generalising to German plural noun classes, from the perspective of a
recurrent neural network. In Proceedings of the 25th Conference on Computational
Natural Language Learning, pages 94–108. ∗Equal contribution

• Verna Dankers and Ivan Titov. 2022. Recursive neural networks with bottlenecks
diagnose (non-)compositionality. In Findings of the Association for Computational
Linguistics: EMNLP 2022, pages 4361–4378

• Verna Dankers and Christopher Lucas. 2023. Non-compositionality in sentiment:

https://aclanthology.org/2024.findings-acl.852/
https://aclanthology.org/2024.findings-acl.852/
https://aclanthology.org/2022.acl-long.286/
https://aclanthology.org/2022.acl-long.286/
https://aclanthology.org/2022.acl-long.286/
https://aclanthology.org/2022.acl-long.252/
https://aclanthology.org/2022.acl-long.252/
https://aclanthology.org/2022.acl-long.252/
https://aclanthology.org/2021.conll-1.8/
https://aclanthology.org/2021.conll-1.8/
https://aclanthology.org/2022.findings-emnlp.320/
https://aclanthology.org/2022.findings-emnlp.320/
https://aclanthology.org/2023.findings-emnlp.342/
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New data and analyses. In Findings of the Association for Computational Lin-
guistics: EMNLP 2023, pages 5150–5162

• Verna Dankers and Vikas Raunak. 2025. Memorization inheritance in sequence-
level knowledge distillation for neural machine translation. In Proceedings of the
63rd Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 760–774

https://aclanthology.org/2023.findings-emnlp.342/
https://aclanthology.org/2023.findings-emnlp.342/
https://aclanthology.org/2023.findings-emnlp.342/
https://doi.org/10.18653/v1/2025.acl-short.61
https://doi.org/10.18653/v1/2025.acl-short.61


Chapter 2

Background

Throughout the thesis, transformer models (Vaswani et al., 2017) are examined through
the lenses of memorisation and compositionality. Before diving into new results, let us
review the background on these topics. Firstly, in §2.1, by reviewing the composition of
the model architectures employed, the tasks that we will consider and the wide range of
interpretability methods we will later rely on. Afterwards, I go over related work on
memorisation (§2.2), and we end with background information on the continuum of
(non-)compositionality in natural language, and what is known about how computational
models and humans balance compositional with non-compositional processing (§2.3).

2.1 A primer on transformer and tasks

NLP at large heavily relies on language modelling: the task of estimating a probability
distribution over sequences of words. I will more formally define it in §2.1.2, but what
is relevant for now is that LMs are predominantly trained using next-word prediction,
where they are provided with examples of the form (xn

1 ,y). Given the context of length n

(consisting of x1,x2, . . . ,xn), they are trained to predict the next word y, processing text
in the order of reading. In sequence classification tasks, the objective is to estimate
a conditional probability distribution over abstract classes given an input sequence,
where the total number of classes is typically small – e.g. when performing sentiment
classification, these classes could be ‘negative’, ‘positive’ and ‘neutral’. Training pairs
are of the form (xn

1 ,y), with y being an abstract target instead of the next token. In
the task of machine translation, on the other hand, we train models to estimate a
conditional probability of a translation, based on an input sequence. Training pairs
are of the form (xn

1 ,ym
1 ), containing an input sequence xn

1 in one language (the source
language) and translation ym

1 in another language (the target language). For these
tasks, examples are typically created in an automated way for language modelling –
since one can simply take existing text excerpts and break them down into (xn

1 , y) pairs –

12
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and in a semi-automated or manual way for MT and natural language classification – e.g.
by collecting examples from content creators on the web, or asking human annotators
to provide translations or label examples. We then use a computational model Θ to fit
the task-specific probability distribution based on these training examples.

2.1.1 Transformer

We return to the individual tasks in §2.1.2, but first focus on the model architecture dom-
inant in NLP since its presentation in 2017 by Vaswani et al.: transformer. Transformer
is used throughout this thesis in various forms.

Encoding a sequence of words Before transformer can process xn
1 ∈ Vx, we first

separate the sequence into tokens using a tokenisation scheme that maps every
natural language word to a sequence of symbols from the vocabulary of the model
V ′x. This vocabulary typically contains tokens representing words, but also subwords
and even individual letters or symbols, such that new words can be processed without
encountering out-of-vocabulary issues. Words that are frequent in the training corpus
would often be assigned their own token, whereas less frequently occurring words are
more likely to be segmented more. For instance, “out of the blue” would be tokenised
as “_out _of _the _blue” but “this is gobbledygook” would be processed as “_this
_is _go bb led yg ook”. The main families of tokenisation schemes are based on Byte-
Pair Encoding (BPE) (Sennrich et al., 2016), and Unigram LMs (Kudo, 2018). BPE
builds a subword vocabulary by repeatedly merging frequent character pairs, while the
Unigram LM prunes a large set of candidate subwords using a probabilistic model to
choose likely segmentations. The vocabulary also contains special tokens (such as the
beginning-of-sentence (BOS) and end-of-sentence (EOS) token) which can be used to
explicitly delineate parts of the input. Transformer stores d-dimensional representations
for each token in a separate row of a vocabulary weight matrix WV ′x ∈R

∣V ′x∣×d and stores
representations for positional indices in which tokens can occur in a sequence with a max
length of I in a positional weight matrix WPx ∈RI×d. Together, these weights represent
the input embedding layer, parametrising θEmb. After tokenisation, transformer
encodes the input in a high-dimensional space xn

1 ∈Rn×d by simply summing the rows
that correspond to the tokens and their positions.1 Vaswani et al. originally considered
both learning the positional weight matrix and fixing the weights up front by encoding
positions using sine and cosine functions of different frequencies.

1Where, for simplicity, I assume length n does not change post tokenisation here. By convention,
matrices are denoted with uppercase italicised letters. Note, however, that I use lowercase bold symbols
to denote the matrix of hidden representations for multiple tokens, to emphasise the relationship to
individual hidden representations.
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Figure 2.1: Schematic overview of transformer, adapted from Vaswani et al. (2017), along
with two layer variants used in the thesis. Because layer variants (b) and (c) are only used
without MHCA, we omit the green block there. Dashed lines indicate residual connections.

The sequence passes through the model Our encoded sequence now passes through
a composition of L transformer layers, where each layer has its own parameters, and the
output of layer l feeds into layer l+1. Figure 2.1 depicts transformer, along with two
layer variants employed by models in the thesis. We will introduce these variants and
other modifications that apply to models used in the thesis later on, when discussing
the model component to which they apply.

One individual transformer layer, as per the original definition by Vaswani et al.
consists of four or six components, depending on whether the current transformer
is stand-alone or whether it receives input sm

1 from another transformer (we mark
modifications required for the latter in dark green in equations and figures).2 When two
transformers are chained, they are referred to as the encoder and decoder, respectively.
A stand-alone transformer is referred to as an encoder-only or decoder-only model.

xn
1 firstly passes through a multi-head self-attention (MHSA) module, followed by

a normalisation operation with a residual connection. This ensures that tokens are
contextualised within the input sequence they are a part of, and that their representations
are a combination of the current layer and the previous layer. If transformer receives
input from another transformer, that input sm

1 then passes through the multi-head
cross-attention (MHCA) module, followed by another normalisation operation with a

2The introductory paragraph referred to the source and target sequences as xn
1 and ym

1 . To discuss
how various architectures rely on the same underlying transformer layer, we now refer to the input of
the current transformer as xn

1 , temporarily referring to the source sequence from another model as sm
1 .

We return to referring to these two sequences as xn
1 and ym

1 in the next subsection.
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residual connection. This ensures that representations for the input are combined with
relevant prior context (e.g. the source sequence in NMT). Finally, the representations
go through a feedforward layer that enriches the now contextualised representations.
This is followed by another normalisation operation with a residual connection, again
ensuring representations are a combination of previous (sub-)layers and the feedforward
layer. The paragraphs that follow further detail these components using equations.

Multi-head self-attention In the MHSA module, the representation of a current
token in position i (xi) is combined with all tokens through a weighted sum of tokens’
representations in the self-attention function A. Self-attention involves linear projections
Q, K and V (producing query, key and value vectors) that transform their inputs into
k-dimensional vectors (k = d

h). Self-attention compares the query vector for token i to
the key vectors for all tokens, computing attention weights using the softmax based on
that comparison. Using the weights, the new representation for token i is a mixture
of the value vectors. This is performed h times, where each time is referred to as an
attention head. The outputs of heads are combined by concatenation, after which a final
output projection is applied (WO). The full module is detailed in Equations (2.1)-(2.5).

u′i = [A(1)(xn
1 ,xn

1 )i; . . . ;A(h)(xn
1 ,xn

1 )i]WO MHSA WO∈Rhk×d (2.1)

A(xn
1 ,zm

1 ) = softmax(Q(xn
1 )K(zm

1 )
⊺+M

√
k

)V(zm
1 ) attention M∈Rn×m (2.2)

Q(xn
1 ) = xn

1 WQ query vectors WQ∈Rd×k (2.3)

K(xn
1 ) = xn

1 WK key vectors WK∈Rd×k (2.4)

V(xn
1 ) = xn

1 WV value vectors WV ∈Rd×k (2.5)

Vaswani et al. were not the first to introduce an attention mechanism; it had
previously been proposed in NMT by Bahdanau et al. (2015) as a mechanism that
allowed a model to selectively focus on specific words on the source side when translating
a word on the target side. Yet, Vaswani et al. were the first to build a model that
only has attention as a mechanism for token-mixing – as opposed to more traditional
recurrent models, that processed tokens in order, combining consecutive tokens through
weighted gating mechanisms (e.g. Hochreiter and Schmidhuber, 1997). Generally, the
role of MHSA is to combine tokens that are related in various ways, such as tokens
that are close together in the input (e.g. Raganato and Tiedemann, 2018; Clark et al.,
2019b; Wang et al., 2022; Ferrando and Voita, 2024) or tokens that are syntactically
or semantically related (e.g. Clark et al., 2019b; Chen et al., 2023). More niche roles
have also been identified, such as heads attending to rare words (Voita et al., 2019c).
Although post-hoc analyses have identified such roles, the MHSA develops as the model
is trained, without researchers having control over or absolute clarity about what the
attention captures.
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(b) Cross-attention

Figure 2.2: Illustrative example of attention between tokens in transformer, for MHSA and
MHCA. The underlying data is averaged over layers for the En-Nl NMT model used in
chapter 6, with edges below 0.05 suppressed. EOS tokens are omitted to improve visibility.

For a concrete example of attention between tokens, inspect Figure 2.2a, where “the
news came out of the blue” is captured using (sub)words, with attention here averaged
over the layers of a model from chapter 6 of the thesis. Line thickness indicates the
magnitude of the attention weight: we observe a clear impact of proximity, where tokens
that are close together in the input attend more to one another, and also observe an
effect at the phrase level, since “_out _of _the” all strongly attend to “_blue”.

Modification 1 Equation (2.2) contains the masking matrix M . The masking matrix
can be used to suppress interactions between tokens that do not satisfy the causality
property; Mi,j=0 if j ≤ i and is set to a large negative number, otherwise (note that in the
MHSA n=m). Without masking, transformer is considered bidirectional, whereas with
masking, it is referred to as being autoregressive (e.g. in GPT-2, Radford et al., 2019).
Vaswani et al. only used the mask in the decoder of their encoder-decoder NMT model.
A stand-alone, bidirectional transformer is referred to as an encoder-only transformer; a
stand-alone, autoregressive transformer is referred to as a decoder-only transformer.

Modification 2 In the original formulation, every token can attend to every other
token (or every token up to i in the autoregressive transformer). Child et al. (2019)
introduced multiple variants of sparse attention, where tokens can only attend to other
tokens within a certain window. Some architectures, such as GPT-Neo from Black et al.
(2021), alternate dense attention layers with sparse attention layers.

Modification 3 A final modification employed by later models is that, instead of
encoding the position of an example in the embedding layer, positions are encoded in the
attention modules. In Equation (2.2), this could be added by computing the numerator
with a function that takes into account key and query vectors, as well as relative position
differences. One such approach is that of the Rotary Position Embedding (RoPE) (Su
et al., 2024), which rotates vectors so that the angle is based on the position index.

LayerNorm and the residual connection After the MHSA, the resulting representations
are combined with the inputs through a residual connection and pass through LayerNorm
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(Ba et al., 2016), see Equation (2.6). LayerNorm for z ∈Rd is defined in Equation (2.7).

ui = LayerNorm(u′i+xi;γ1,β1) layernorm-pre γ1,β1∈R
d (2.6)

LayerNorm(z;γ,β) = γ⊙
z−µz
√

σ2
z + ϵ
+β (2.7)

µz =
1
d

d

∑
j=1

zj , (2.8)

σ2
z =

1
d

d

∑
j=1
(zj −µz)

2 (2.9)

LayerNorm normalises the representations of each token, independent of other examples
in a training batch. This stabilises gradients during the backward pass (e.g. Xiong et al.,
2020) and enhances the attention mechanism, enabling query vectors to attend to all
keys equally, when needed, and ensuring all key vectors are, in principle, selectable by
query vectors (Brody et al., 2023).

Modification 4 According to this formulation, LayerNorm occurs after the MHSA (and
after the feedforward module discussed below). This variant of the transformer layer has,
therefore, been referred to as post-normalised. One modification implemented later
on uses pre-normalisation (e.g. Vaswani et al., 2018), which decouples the residual
connection and LayerNorm, and applies LayerNorm right before the non-linear modules
instead of after. Figure 2.1b depicts the layout of this layer variant. Pre-normalised
layers were found to be more stable and faster to train (Xiong et al., 2020).

Multi-head cross-attention Transformers can be used to create architectures of various
compositions. Vaswani et al. originally used transformer for NMT, using two chained
transformers: the encoder and the decoder. The mechanism that includes encoder
representations from source sentence sm

1 in the decoder is the MHCA module, see
Equation (2.10). This module is similar to the MHSA discussed above, with the
modification that the query vectors come from the current layer, but the key and value
vectors come from layer L of the encoder.

v′i = [A(1)(un
1 ,sm

1 )i; . . . ;A(h)(un
1 ,sm

1 )i]WO MHCA WO∈Rhk×d (2.10)

vi = LayerNorm(v′i+ui;γ2,β2) layernorm-mid γ2,β2 ∈R
d (2.11)

Intuitively, this allows the decoder to look at the tokens in the encoder when deciding
which token to output (or translate, in NMT) next. Figure 2.2b demonstrates this for
our example of “The news came out of the blue”. When translating that into Dutch
(“Het nieuws kwam uit het niets”) using an NMT model used in chapter 6, we observe
both a look-back and look-ahead effect in the cross-attention – e.g. when the input
token is “_Het” (“the”), the cross-attention mostly flows to both “_The” and “_new”.

MHCA is again followed by LayerNorm and a residual connection (Equation (2.11)),
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where the order of the attention, LayerNorm and residual connection would be modified
in a pre-normalised transformer. MHCA is not included in a stand-alone transformer.

Feedforward layer Finally, the hidden representations pass through two linear layers
with a ReLU non-linearity in between them, see Equation (2.12), followed again by
a residual connection and LayerNorm (Equation (2.13)), where the order would be
modified in a pre-normalised transformer.

z′i =
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

ReLU(viW1)W2

ReLU(uiW1)W2
feedforward W1∈Rd×p,W2∈Rp×d (2.12)

zi =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

LayerNorm(z′i+vi;γ3,β3)

LayerNorm(z′i+ui;γ3,β3)
layernorm-post γ3,β3∈R

d (2.13)

The first layer projects the hidden representations of dimensionality d into higher-
dimensionality vectors (with dimension p), and the second one brings them down to d

dimensions, again. As a result, the feedforward layers represent approximately two-thirds
of the total number of parameters of a full transformer model.

The functionalities implemented by feedforward layers have not been studied as
extensively as those of the attention mechanisms, yet one example of an influential
account is that of Geva et al. (2021). They posited that feedforward layers perform
key-value memory retrieval, with the columns of W1 (the keys) as pattern detectors
over the input sequence, detecting patterns such as n-grams or semantic topics, that
provide weights for the rows of W2 (the values). Other work has focused on explaining
what individual neurons in this module capture, identifying, for instance, neurons that
fire if certain facts are in the input (e.g. Dai et al., 2022).

Modification 5 A modification made to the feedforward layer by many LMs proposed
post GPT-2 (Radford et al., 2019) is the use of the GeLU non-linearity (Gaussian Error
Linear Unit) instead of the ReLU, to yield more smooth activations.

Modification 6 A final modification worth mentioning is that Wang and Komatsuzaki
(2021) modified the self-attention and the feedforward layer to be parallel to one another,
instead of being applied consecutively. Figure 2.1c depicts this setup. This modification
was primarily to improve the efficiency of training transformer, and has been shown to
yield minimal performance degradation (Chowdhery et al., 2023).

Classification or unembedding layer After the representations for xn
1 have passed

through the L layers, they can then be used for classification using the output or
unembedding layer, parametrised by θUnemb. When using an encoder-decoder model,
only the decoder would have an output layer. The output layer contains a weight matrix
WV ′y ∈ R

d×∣V ′y ∣, which projects the hidden representations into the output vocabulary
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V ′y and applies softmax to obtain probabilities per output class. For a pre-normalised
transformer, this would be preceded by one final LayerNorm. When generating a
sequence, as is the case for language modelling and translation, the output classes are
tokens, and classification is performed repeatedly. The output vocabulary V ′y would
thus be equal to the input vocabulary of the decoder, and one could even use the same
weight matrix for the embedding and unembedding layers as Vaswani et al. did for
NMT. In that case, the weight matrices are referred to as ‘tied’. When using transformer
for sequence classification, the output vocabulary is typically much smaller.

Bringing it all together We have now reviewed all of transformer’s components, along
with modifications made in the years since 2017 that apply to one or multiple models
used in this thesis. Transformer Θ thus consists of parameters θEmb, θ1,⋯ ,θL, and
θUnemb, and when chaining two transformers within one encoder-decoder model as is
the case for MT, Θ = {θenc

Emb,θ
enc
1 ,⋯ ,θenc

L ,θdec
Emb,θ

dec
1 ,⋯ ,θdec

L , θdec
Unemb}. The corresponding

hyperparameters are hidden dimensionality d, the number of heads h, the hidden
dimensionality k within the attention modules (k= d

h), the hidden dimensionality p

within the feedforward layer, and the number of layers L. Vaswani et al. use d = 512,
k = 64, p = 2048, h = 8 and L = 6 for their transformer-base architecture. We adopt this
original architecture in chapters 3, 5 and 6, and use other transformers in chapter 4.

2.1.2 Language models and fine-tuning

During the last six years, transformers have been widely adopted to train LMs: machine
learning models capturing a probability distribution over word sequences. LMs can be
used to assign a probability to an entire sequence xn

1 (Equation (2.14)), or predict the
most probable continuation xn∗

i of a given input xi−1
1 (Equation (2.15)), typically by

factorising that probability (the likelihood) into a product of conditional probabilities.

P (xn
1 ∣Θ) =

n

∏
i=1

P (xi∣x
i−1
1 ,Θ) (2.14)

xn∗
i = argmax

xn
i

n

∏
t=i

P (xt∣x
t−1
1 ,Θ) (2.15)

When using LMs to generate text, computing the most probable continuation is often
intractable. Taking the argmax at every timestep is one example of a way to approximate
the global argmax (also referred to as greedy decoding). To learn model parameters Θ,
we use a dataset of m examples D ={x(i)}m1 and learn Θ that maximises the log-likelihood
of D via maximum likelihood estimation (MLE):

ΘLM
MLE = argmax

Θ

m

∑
i=1

∣x(i)∣
∑
t=1

logP (x
(i)
t ∣x

(i),t−1
1 ,Θ) (2.16)

For contemporary LMs, D consists of billions of tokens, and training the model on those
tokens is referred to as pretraining. However, not all LMs used in the thesis adhere to
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this objective’s causal constraint. BERT (Devlin et al., 2019), elaborated on below, was
trained using masked language modelling (MLM), where for example i a set of positions
O(i) is introduced that contains all token positions from x(i) that were manipulated in
x̃(i). Tokens can be manipulated by, for instance, being replaced with a special token
([MASK]) or by being swapped with a different vocabulary item. We want to learn Θ
such that it maximises the probabilities of the manipulated tokens:

ΘMLM
MLE = argmax

Θ

m

∑
i=1
∑

t∈O(i)
logP (x

(i)
t ∣x̃

(i),Θ) (2.17)

These two respective types of language modelling correspond to the autoregressive and
bidirectional designs of transformer as discussed in the previous subsection. In the
autoregressive setup, when making predictions based on input x

(i),t−1
1 , the mask in the

MHSA in Equation (2.2) prohibits token interactions beyond time step t−1. In the
bidirectional design, the entire (manipulated) input sequence x̃(i) is given to the model,
and none of the attention flow is blocked. Figure 2.3 depicts the architectural differences
of the LMs and translation models used throughout the thesis, and demonstrates the
order in which the different LMs were presented, providing context for why they have
certain architectural differences.

Finding the MLE solution is an optimisation problem, which is equivalent to finding
the solution that minimises the negative log-likelihood (NLL) loss:

L
LM
({x(i)}m1 ,Θ) = −

m

∑
i=1

∣x(i)∣
∑
t=1

logP (x
(i)
t ∣x

(i),t−1
1 ,Θ) (2.18)

This optimisation problem is non-convex and is approached by applying mini-batch
stochastic gradient descent, an iterative process that starts from a model initialisation
and iteratively updates the parameters using gradients computed for a batch of the
data until reaching a stopping criterion. The models used throughout the thesis all rely
on the Adam and AdamW optimisers (Kingma and Ba, 2015; Loshchilov and Hutter,
2017). We do not further experiment with the optimiser, and, therefore, refer the reader
to the respective papers for more information.

BERT Devlin et al. (2019) proposed Bidirectional Encoder Representations from
Transformers (BERT), one of the first widely used transformer-based LMs. BERT consists
of one bidirectional transformer with layer type (a) from Figure 2.1, and was released
for two model sizes: a base model (with 12 layers and 110M parameters) and a large
model (with 24 layers and 340M parameters). BERT was trained using two objectives: an
MLM objective for predicting which token in the input was randomly manipulated, and
a next sentence prediction objective for predicting whether two text segments preceded
each other in the training corpus. The models have a vocabulary constructed using the
WordPiece algorithm (Wu et al., 2016), a BPE-like algorithm that builds a vocabulary
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Figure 2.3: Overview of the models used in the thesis, with a generic indication of their
architectural differences and the way models relate to one another, temporally. GPT-2 is
the only model we do not consider, but it was influential for architectural changes to LMs
proposed after BERT. a, b and c refer to the subfigures from Figure 2.1.

of subword units by iteratively merging pairs of tokens to maximise the likelihood of a
simple LM. When encoding a sequence, every input starts with a special symbol [CLS],
and segments are delineated by using the [SEP] token in between the two parts and by
adding special segment embeddings to transformer’s standard input embeddings. BERT

was pretrained using 3.3B tokens from the BooksCorpus (Zhu et al., 2015) and English
Wikipedia.

To use LMs for tasks other than language modelling, Devlin et al. proposed a
straightforward fine-tuning recipe that was widely adopted afterwards: the classification
layer of the model used during pretraining is replaced with a randomly initialised
classification layer whose number of output classes matches the task of interest, and
the model and this layer are trained jointly on a new task. To demonstrate the
superiority of BERT compared to models that were considered the state of the art in 2019,
Devlin et al. evaluated the model on benchmarks GLUE (Wang et al., 2019b), SQuAD
(Rajpurkar et al., 2016) and SWAG (Zellers et al., 2018), that evaluate natural language
understanding, question answering and common-sense inference using a wide range
of tasks. We do not further elaborate on these tasks here, but return to benchmark
tasks for fine-tuning in chapter 4, where we, too, use them in our experiments. When
fine-tuning, models are trained to minimise the NLL loss using data different from the
pretraining data, in a dataset with input and output pairs: D = {(x(i),y(i))}m1 . Inputs
are sentences in natural language, and the output classes come from a typically small
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vocabulary Vy:

L
F T
({(x(i),y(i))}m1 ,Θ) = −

m

∑
i=1

logP (y(i)∣x(i),Θ) (2.19)

In the years that have passed since BERT appeared, other types of fine-tuning have
been proposed, such as parameter-efficient fine-tuning (e.g. Houlsby et al., 2019) that
fine-tunes a small set of model parameters or newly introduced parameters together with
the classifier while freezing the remainder of the model. Alternative approaches have
established that, particularly for models that far exceed BERT in size, downstream tasks
can be performed by rephrasing them as a language modelling task using a technique
referred to as prompting, or in-context learning (Brown et al., 2020). The task is then
introduced in input xt−1

1 , and the model’s continuation xn
t is post-processed to extract

the prediction. In this thesis, we will only consider fine-tuning as proposed by Devlin
et al., which is why we do not further elaborate on these alternative approaches here.

GPT-2 and beyond Prior to and following the release of BERT, other authors and teams
proposed a range of transformer-based models. Very influential was the release of GPT-2
by Radford et al. (2019), a scaled-up version of its predecessor GPT-1 (Radford et al.,
2018). GPT-2 is architecturally different from BERT in that it uses pre-normalisation and
autoregressive language modelling, and a range of models proposed afterwards adopted
similar architectures. The release of GPT-2 was followed by the announcement of GPT-3,
but its parameters were never released to the public. What followed was that various
initiatives developed models inspired by the GPT series, either developed to create (open)
models that could compete with them in terms of performance, or to better understand
LMs and their scaling behaviour. Models from three such initiatives will be employed
in this thesis:

• GPT-Neo: GPT-Neo (Black et al., 2021) was one of the first open-science projects
that aimed to train autoregressive LMs that could compete with GPT-3. The
models vary in size from 125M to 2.7B (12-32 layers), and were pretrained on
approximately 300B tokens from the Pile (Gao et al., 2020) – an open-source
dataset composed of 22 smaller datasets, including academic texts, web content,
books, code, and more. GPT-Neo uses layer type (b) from Figure 2.1, applying
pre-normalisation, but with the attention changed to integrate dense and sparse
attention.

• OPT: Zhang et al. (2022b) presented Open Pretrained Transformer (OPT), a family
of decoder-only transformer LMs that vary in size from 125M to 175B parameters,
and vary in layers from 12 to 96 layers. OPT uses layer type (b) from Figure 2.1
and was pretrained on a 180B corpus that combines data from multiple corpora,
among which the BooksCorpus (Zhu et al., 2015) and the Pile (Gao et al., 2020).



Chapter 2. Background 23

• Pythia: Biderman et al. (2023) presented Pythia, a family of decoder-only trans-
former LMs that vary in size from 70M to 6.9B parameters, and vary in layers
from 6 to 36 layers. Pythia uses layer type (c) from Figure 2.1, thus having a
setup that employs RoPE, and in which the MHSA and feedforward modules are
parallelised. Pythia was trained on 300B tokens from the Pile (Gao et al., 2020).

All of these model families use a tokenisation scheme referred to as byte-level BPE
(Wang et al., 2020). Byte-level BPE merges at the level of bytes instead of characters.
Upon presentation, the models were primarily evaluated using prompting techniques, to
demonstrate performance that closely resembles GPT-3 for the larger model sizes, yet,
similar to BERT, they can also be used in the fine-tuning paradigm, as we will further
elaborate on in chapter 4.

2.1.3 Neural machine translation

Ever since the presentation of BERT, when evaluating or analysing models on downstream
tasks, one would typically start by fine-tuning an LM rather than starting training from
a randomly initialised transformer. NMT has, for a long time, been an exception to this
rule, and in the thesis (in chapters 3, 5 and 6) we will review NMT systems that thus
also train from scratch directly on data relevant to the task. In MT, given our sequence
in the source language xn

1 (from vocabulary Vx), we aim to find the translation in the
target language, yk∗

1 (from vocabulary Vy):

yk∗
1 = argmax

yk
1

k

∏
t=1

P (yt∣x
n
1 ,yt−1

1 ,Θ) (2.20)

Akin to language modelling, we factorise the probability of the target into a product of
conditional probabilities over tokens, such that the probability of the next translated
token depends on the source and all translated tokens observed so far. Note that, again,
finding the global argmax is intractable in practice, so when generating a translation
with an NMT model, one approximates the global argmax using greedy decoding or
otherwise, as we elaborate on below. We learn model parameters Θ using a dataset of m

example source-target pairs, D = {(x(i),y(i))}m1 , via MLE, and the NLL loss, applying
length normalisation for the targets:

ΘMT
MLE = argmax

Θ

m

∑
i=1

1
∣y(i)∣

∣y(i)∣
∑
t=1

logP (y
(i)
t ∣x

(i),y
(i),t−1
1 ,Θ) (2.21)

L
MT
({(x(i),y(i))}m1 ,Θ) = −

m

∑
i=1

1
∣y(i)∣

∣y(i)∣
∑
t=1

logP (y
(i)
t ∣x

(i),y
(i),t−1
1 ,Θ) (2.22)

In practice, these sequences typically consist of BPE tokens (Sennrich et al., 2016),
where the BPE tokens are estimated using D, using either one vocabulary for each
language, or one large joint vocabulary.
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The architecture Vaswani et al. (2017) implement the model Θ using two chained
transformers: the encoder and the decoder. Both transformers have layer type (a) from
Figure 2.1. The encoder is a bidirectional transformer without the MHCA module; it
processes the source sequence xn

1 and its outputs are the hidden representations from
transformer layer L. The decoder is an autoregressive transformer with the MHCA
module; it encodes all target tokens seen so far by taking into account the encoded
source sequence via the MHCA, as previously depicted in Figure 2.2b. Only the decoder
has an unembedding layer, which transforms the output of decoder layer L into a vector
of size ∣Vy ∣, that, following the application of the softmax function, is a probability
distribution over the tokens from Vy.

Training and inference During the training phase, we optimise the model parameters
using the NLL loss function applied within batches that fit up to a pre-specified number
of tokens. Following Vaswani et al., it became standard to apply label smoothing during
training, assigning a small portion of the target probability mass to incorrect classes to
keep models from being overconfident.

When using the model after training to predict translations for new inputs, we
compute an approximation of yk∗

1 , but not necessarily the translation that is the most
likely, because the number of possible translations grows exponentially as the translation
gets longer. Instead, translations are generated using beam search, where one sets
a beam size and stores only that number of hypotheses at a time. With each time
step, one considers extending all current solutions in the beam with every vocabulary
token, storing only the candidates allowed within the beam size. Generation ends for
an individual translation when the EOS token is generated. The selected translation is
the one with the highest overall (log-)probability. Setting the beam size to one yields
greedy decoding, where the highest-probability token is selected at each time step.

Evaluation In NLP, it is standard practice to use train and test sets that are randomly
sampled from a larger data pool; yet, for NMT, this is not the case. NMT training
corpora are often semi-automatically collected, e.g. by scraping the web for examples
that are likely to be translations (e.g. Schwenk et al., 2021b). When randomly sampling
test data, one may thus end up with low-quality translations. To avoid overestimating
models’ performance, gold-standard human-translated text is used instead.3

The quality of models’ translations has since long been measured using the Bilingual
Evaluation Understudy (BLEU) (Papineni et al., 2002) metric. It calculates n-gram
overlap between translations and targets (typically for n = 1 to 4), computing the
geometric mean of the n-gram overlap multiplied by a brevity penalty. BLEU has been

3The Conference on Machine Translation (e.g. Kocmi et al., 2022, 2023), for instance, releases new
test sets with each shared task, to ensure that the test data is unseen and of high quality.
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criticised for not capturing the semantic adequacy of translations and being insensitive
to fluency and grammaticality. Alternative metrics have been proposed that capture
token- or character-level overlap of targets and translations (e.g. METEOR, or chrF,
Banerjee and Lavie, 2005; Popović, 2015), or that use neural models trained specifically
to estimate translation quality (e.g. COMET, Rei et al., 2020). In spite of this, BLEU
remains a widely adopted metric for evaluation in NMT; to this day, it facilitates
standardisation in the evaluation across systems and papers.

In chapter 3, we will not only consider models’ quality in terms of BLEU and
COMET but also look at their tendency to hallucinate. Hallucinations are translations
with certain n-grams repeated over and over, or translations with fluent (sub-)sentences
that do not align to the source material (Guerreiro et al., 2023). Lee et al. (2018)
were one of the first to study this extensively for NMT, by inserting tokens into source
sentences and measuring for how many sentences this could lead to a hallucination.
Raunak et al. (2021) later posited that memorised examples can more easily lead to
a hallucination than non-memorised ones. We adopt the approach of Lee et al. in
chapter 3.

2.1.4 Interpretability methods

The rise of deep neural networks sparked interest in what their layers, parameters, and
internal representations capture, and how model-internal signals can explain model
outputs. Methods that were developed to answer these questions are broadly referred
to as interpretability methods (see Madsen et al., 2022, for an overview). More
recently, mechanistic interpretability methods (Saphra and Wiegreffe, 2024) gained
traction, which put more emphasis on explaining model behaviour through causal
interventions instead of sticking to post-hoc analyses. Many such methods are not
specific to transformer, but have been widely applied to transformer in recent years. In
chapters 4 and 6, the methodology used relies on some of these methods, as summarised
in Figure 2.4, which we will now briefly review. Our review primarily covers techniques
we, ourselves, employ and is not meant to be an exhaustive overview.

Behavioural probes When processing an input, hidden representations are com-
puted that are passed from layer to layer as reviewed in §2.1. A wide range of efforts
has investigated what those representations capture, and what they can teach us about
what the model has learnt when it comes to, for instance, linguistic structure. The
predominant paradigm for doing so has employed probing classifiers (Alain and
Bengio, 2017; Conneau et al., 2018; Hupkes et al., 2018). Probing classifiers are typically
external, small neural networks that take the hidden representations as inputs, and are
trained on a task of choice. If the probe can make accurate predictions, it is assumed
that the hidden representations that were fed as input encoded the property that the



Chapter 2. Background 26

layer replacement/

re-initialisation, Ch4
gradient analysis, Ch4

behavioural probes,

Ch4, Ch6
amnesic probes, Ch6

attention weight

analysis, Ch6

CCA analyses, Ch4, Ch6

attention

model parameters

hidden representations

internal

modifications

interpreting model-

internals post-hoc

external

interpretations

Figure 2.4: An overview of the interpretability methods applied in the thesis, the entity to
which they apply and the extent to which they operate inside or outside of the model.

task of choice measured. The primary criticism of this paradigm is that it is not
guaranteed that the model encoded the property, since a probe of sufficient size might,
given sufficient training data, learn the task even if the original model did not encode
the property probed for (e.g. Hewitt and Liang, 2019; Ravichander et al., 2021).
Considerations for use When applying probes, this should thus be handled with
care, for instance by severely limiting the capacity of the probe, using control tasks
and only relying on the probe’s increase in performance compared to the control task
(Hewitt and Liang, 2019), or adopting an information-theoretic approach to probing
(Voita and Titov, 2020). We refer to probes that are trained to identify properties or
explain model behaviour using those properties as behavioural probes, and adopt
such probes in chapters 4 and 6.

Amnesic probes A second criticism of probing is that even if the hidden representations
appear to encode a property, that property may not causally influence the model’s
predictions. Amnesic probing (Elazar et al., 2021) extended conventional probing in
a way that establishes that causal connection, by removing information from the hidden
representations based on probes, and monitoring the change in behaviour of the base
model. Iterative null-space projection (INLP), proposed by Ravfogel et al. (2020), was
used to remove information from the representations, by training k probing classifiers to
predict a property from hidden representations H. After training probe i, parametrised
by Wi, the vectors are projected onto the null-space of Wi, using projection matrix
PN(Wi), such that WiPN(Wi)H = 0. The projection matrix of the intersection of all k

null spaces can then remove features found by the k classifiers. We complement analyses
of behavioural probes with amnesic probes in chapter 6.
Considerations for use When intervening in a model, one should make minimal
changes to avoid degrading its overall performance. This can be checked by monitoring
evaluation metrics other than the reduction of the model’s ability to perform the task
that the probe measures. For instance, one could measure the change in perplexity
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when applying INLP to an LM. It should also be taken into account that INLP can
only remove linearly decodable information – i.e. the representation may still contain
information about the target attribute, just not in a linear form.

Intrinsic probes Instead of training probes externally, alternatives for behavioural
probes analyse model internals directly. Such intrinsic probes lay out how linguistic
information is structured within representations. Examples are techniques that select
dimensions that most encode morphosyntactic attributes such as tense, gender, animacy
or case (Hennigen et al., 2020), or similarity-based analyses that align representations
from different models or layers and then examine how representations differ with respect
to a target attribute (e.g. Raghu et al., 2017; Morcos et al., 2018; Voita et al., 2019a;
Saphra and Lopez, 2019). Similarity-based analyses often relied on variants of Canonical
Correlation Analysis (CCA) (Hotelling, 1936), and we adopt this method in chapters 4
and 6. Assume matrices A ∈ RdA×n and B ∈ RdB×n, that are representations for n

datapoints, drawn from two different sources with dimensionalities dA and dB – e.g.
different layers of one network. CCA linearly transforms these subspaces A′ =WA,
B′ = V B such as to maximise the correlations {ρ1, . . . ,ρmin(dA,dB)} of the transformed
subspaces.
Considerations for use Because CCA does not train an external network, the
criticisms that apply to probing do not apply as much here. Still, one should ideally
monitor that differences present for the different categories are not also observable
within one category, and the dataset size should exceed the number of dimensions in
the representation (Kornblith et al., 2019).

Although probing is still applied to this day, other analysis methods for interpreting
hidden representations have gained popularity in recent years. One such method is
the use of sparse auto-encoders (Huben et al., 2024, i.a.), that reconstruct hidden
representations in a sparse way to ease the interpretability of the resulting features.
Another method is the projection of hidden representations from lower layers into the
vocabulary space using the unembedding layer (nostalgebraist, 2020), to interpret what
representations capture in terms of the output vocabulary. We do not further elaborate
on them here, but refer the reader to Ferrando et al. (2024) for a comprehensive overview.

Attention weight analyses When a transformer processes an input, it applies attention
modules, and the per-token weights those modules produce have been widely studied
in the interpretability literature (Figure 2.2). The weights have been used for input
attribution since they are assumed to capture the relevance of tokens in the model’s
predictions; the higher the attention weight on token xi when predicting target y, the
more important that token is assumed to be. The extent to which attention is a faithful
explanation of the reasoning process of the model has been widely debated. Most
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notably, Jain and Wallace (2019) pointed out that, for tasks such as sentiment analysis
and natural language inference, attention weights can be modified without changing
models’ predictions and that attention weight analysis does not always agree with other
methods for input attribution. In response, Wiegreffe and Pinter (2019) argued that
while attention is not always faithful, it is often a plausible explanation.

Analyses of attention weights are not unique to transformer models, but the
widespread usage of the model has been a catalyst for this type of research, since
transformer relies on attention in all of its layers. To get to the bottom of interpret-
ing how transformer performs certain tasks, we thus simply must analyse what these
attention mechanisms capture, while taking care when making causal claims about
attention’s role. We previously included examples of attention weight analyses in §2.1,
and include one such analysis in this thesis when relating attention mechanisms to idiom
processing in chapter 6.
Considerations for use To make attention patterns more reliable, alternative ways
of analysing them have been proposed. For instance, taking into account attention
weights from transformer’s layers l < 1 when analysing layer l (Abnar and Zuidema,
2020), jointly analysing the weights with the norms of transformer’s value vectors to
which the weights apply (Kobayashi et al., 2020), or applying interventions within the
attention mechanism to study causal connections to the model’s output, e.g. through
attention knockout that disables certain attention mechanisms (Geva et al., 2023).

Gradient-based analyses of model parameters Instead of relying on the by-products
of a forward pass (i.e. hidden representations and attention weights) one can also directly
try to interpret what the underlying model parameters capture. Obvious signals to
inspect are the gradients with respect to the loss, on a selected data subset, where a larger
gradient norm would suggest a higher relevance. While gradient-based methods have
been widely used as alternatives to attention weights for input attribution (Bastings and
Filippova, 2020), they have also been used to study what certain layers within models
capture, as we will do in chapter 4. Maini et al. (2023) and Stoehr et al. (2024), for
instance, used gradient-based methods to study layer relevance for memorised examples,
on which we further elaborate in §2.2.3.
Considerations for use Care should be taken when interpreting the norm as layer
relevance directly, since this post-hoc signal does not always align with other methods
that intervene within the model (Maini et al., 2023). For instance, one could inspect
the maximum within a layer or model component (Stoehr et al., 2024), or inspect the
norm’s ratio for two different data subsets of interest (Stephenson et al., 2021).

Modifying model parameters Instead of analysing model parameters post-hoc, one can
change a subset of the parameters directly and monitor the effect on model behaviour
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Memorisation as model descriptor (§2.2.1)

Data memorisation (§2.2.2)

During training, some training examples are

memorised whereas others are not. LLMs have

recently been found to even memorise paragraphs

from pretraining verbatim. Work in this area

examines both how to quantify memorisation

best and which examples are memorised. 

Work in this area investigates

where in the model, and how, the

memorisation of training data is

implemented. It also questions how

to edit existing memories.

memorisation

Memorisation as interpolation (§2.2.1)

Models that memorise the entire training set

are said to interpolate it. Traditionally

associated with overfitting, it appears benign

in deep neural networks, that generalise well

in spite of overfitting. Understanding when

interpolation is benign, harmful or beneficial

is an active area of research.

Memorisation implementation (§2.2.3)

evaluationBased on their performance on

evaluation data, models are

distinguished as memorising or

generalising networks. Research

examines how these different types of

networks differ from one another.

Figure 2.5: Summary of the different ways in which memorisation has been discussed in the
literature. In the thesis, we contribute new work to the directions marked in yellow.

with respect to the phenomenon of interest. If the model’s behaviour remains unchanged,
the modified subset of parameters likely did not encode that phenomenon. Stephenson
et al. (2021), Zhang et al. (2022a), Maini et al. (2023), for instance, applied layer re-
initialisation, re-randomisation and retraining to study layers’ roles in image classification
for transformer and deep convolutional neural networks (CNNs), and Mosbach et al.
(2020, 2021) applied layer re-initialisation to examine how fine-tuning affects BERT’s
layers. We apply similar methods in chapter 4.
Considerations for use When applying these methods, it is important to recognise
that internal modifications to the model may affect not only the targeted capability but
also its overall behaviour. The more the overall behaviour changes, the less certain one
can be that the specific change focused on is meaningful. As mentioned for the amnesic
probes, it is thus a good practice to monitor evaluation metrics other than performance
on the examples or task of interest.

2.2 Memorisation metrics and findings

Now that we have reviewed the models, tasks, and interpretability methods we will
consider, we can dive into the topic of memorisation. Here, we first review a brief
history of how memorisation became a multi-faceted topic within deep learning in recent
years (§2.2.1), after which we will move on to discussing memorisation of individual
datapoints (§2.2.2), and how memorisation affects models internally (§2.2.3). Figure 2.5
summarises the different ways in which memorisation has been discussed in the literature,
highlighting the directions to which the thesis directly contributes.
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Figure 2.6: Illustrations of phenomena related to memorisation observed in classical machine
learning (a), and deep learning (b, c).

2.2.1 A paradigm shift around memorisation

The broader topic of memorisation traces back to the core principles of machine learning
of optimisation, evaluation and generalisability.4 By applying optimisation techniques,
we learn models that minimise the training error, but the quality of models is ultimately
determined by their generalisation or test error – the expected error on new examples. A
common assumption is that training and test data share the same underlying distribution
and are independent and identically distributed (IID). A model that perfectly captures
the underlying data distribution would then have equal expected training and test errors.
However, in practice, learning (imperfect) models based on training data yields a test
error that exceeds the training error. Models’ success depends on both minimising the
training error and narrowing the gap between the training and test error. A model
that achieves low training error but fails to generalise exhibits overfitting, memorising
properties of the training set that do not transfer to new data. Conversely, underfitting
occurs when a model neither captures training data well nor generalises. These challenges
have been central to machine learning for decades; for example, Dietterich (1995, p.326)
already highlighted concerns about “fit[ting] the noise in the data by memorizing various
peculiarities”. Figure 2.6a illustrates these phenomena. Under- and overfitting can be
discussed within the context of training a single model for many epochs until it starts
to overfit, but also within the context of different models of increasing sizes, that, as
they grow in capacity, become more likely to overfit (according to classical machine
learning theory, at least).

To address overfitting and balance underfitting and overfitting, key strategies in-
clude adjusting model capacity (avoiding over-parametrisation), applying regularisation
techniques (explicit, like weight decay, or implicit, like early stopping), and increasing
the training dataset size. Yet, deep neural networks have defied the assumption that
over-parametrisation (and thus memorisation) cannot co-occur with strong generalisa-
tion skills. Zhang et al. (2017), for instance, trained pretrained deep CNNs on image

4I refer to Goodfellow et al. (2016) for elaboration on the core principles of deep learning, in general,
and the notions of overfitting and underfitting in their section 5.2, specifically.
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classification tasks, demonstrating that without altering the training procedure or the
model, zero training error can be achieved on both (i) regular data and (ii) mislabelled
variants of that data. This established that even though the network has the effective
capacity5 to memorise the training set when trained on (i), generalisation skills emerge.
They interpret memorisation as interpolation of the entire training set – achieving
100% training accuracy and near-zero training error after training for multiple epochs.
The coexistence of over-parametrisation with a low generalisation error is known as
benign overfitting (Bartlett et al., 2020). Subsequent research has explored conditions
enabling benign overfitting (Li et al., 2021b), qualitative differences in models trained
on real vs noisy data (Arpit et al., 2017), and concerns that benign overfitting can
actually be ‘malign’, harming generalisation when evaluating models outside of the IID
evaluation paradigm (Sanyal et al., 2020; Wald et al., 2023). Benign overfitting is closely
linked to the double descent phenomenon (Belkin et al., 2019) (Figure 2.6b), where the
test error initially decreases when increasing model capacity, then rises (as predicted
by traditional machine learning theory), but ultimately drops again once the model
becomes over-parametrised for the given data, exhibiting benign overfitting.

While interpolation depends on both the model and its training set, memorisation
has also been discussed as a qualitative model descriptor, based on train and test
performance. A model that interpolates the training set can be either a memorising
network or a generalising network in case of a high or low generalisation error, respectively.
In the aforementioned work, but also in articles discussed later on in §2.2.3, memorising
networks are often intentionally trained using label randomisation or input corruption
to study the properties that these networks have (e.g. Zhang et al., 2017; Arpit et al.,
2017; Morcos et al., 2018). However, memorising and generalising networks can also
emerge naturally during training through grokking (Power et al., 2022): initially, the
model interpolates the training set but generalises poorly, until – after training for many
additional epochs – the test accuracy suddenly increases long after the training data has
been interpolated (see Figure 2.6c). In this process, a memorising network transitions
into a generalising one. While the topics of grokking and double descent have mostly
been studied in isolation, Davies et al. (2023) suggest they can be viewed as two sides
of the same coin.

Research on overfitting, grokking, and double descent typically examines trends
across model groups rather than the properties of specific memorised datapoints (§2.2.2)
or how memorisation affects a model internally (§2.2.3). We do not explore these topics
further here, but the above work provides context for the discussions ahead.

5The set of hypotheses, i.e. model instantiations, that are reachable by applying a specific learning
algorithm to a specific dataset (Arpit et al., 2017).
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2.2.2 Data memorisation

In the previous subsection, we discussed memorisation as a phenomenon that either
applies to the training set as a whole or as a qualitative descriptor of models that have
memorised their training set without generalising to test data. Yet, memorisation is a
multi-faceted phenomenon, and within NLP, the type of memorisation that has received
the most attention in recent years is that of memorisation of individual datapoints from
the pretraining or the subsequent fine-tuning phase. Given the vast sizes of pretraining
corpora, it is impossible for contemporary LLMs to fully interpolate their pretraining
data; especially since pretraining now often only involves a single pass over the data,
successfully avoiding overfitting in the traditional sense (Xue et al., 2023). And yet, even
within single-pass pretraining, individual examples from pretraining are still memorised.
Related work, therefore, focuses on identifying how much of the pretraining or fine-
tuning data models memorise, what information those memorised examples contain,
and establishing under which conditions memorisation increases. In doing so, articles
typically distinguish between binary and graded memorisation metrics.

Binary memorisation metrics When approaching memorisation as something that ap-
plies to only a small subset of datapoints, a widely used definition is that of extractable
memorisation (Nasr et al., 2023), which applies to generative models:

Given a generative model f parametrised by θ, an example x from a training set X
is extractably memorised if one can construct a prompt p that makes the model
produce x, i.e. fθ(p) = x.

More restricted variants of this definition are discoverable memorisation (Nasr et al.,
2023), where p comes from the training set and directly precedes x, k-eidetic memorisa-
tion (Carlini et al., 2019), which focuses on cases where x appears ≤ k times in X, and
exact memorisation (Tirumala et al., 2022), which focuses on the final token in x. More
loosely defined variants relax the constraint that x needs to be fully reproduced, e.g.
in the case of approximate memorisation (Ippolito et al., 2023). The general type of
memorised content that these metrics all capture – the literal reproduction of text from
the training set – is called verbatim memorisation.

Carlini et al. (2021) were among the first to identify that LMs have memorised certain
problematic content verbatim: out of 200,000 examples generated with GPT-2, there
were 604 exact matches, containing text from news articles, copyright notices and Wiki
entries, but also universally unique identifiers and PII such as names, phone numbers,
and email addresses. McCoy et al. (2023) later found that GPT-2 even memorises
passages that are over 1000 words long, although such cases are quite rare. Related work
has primarily focused on extracting memorised content at a larger scale (e.g. Carlini



Chapter 2. Background 33

et al., 2022; Nasr et al., 2023) and improving the techniques to extract the sequences,
such as attaching a constant soft prompt to the prefix (e.g. Wang et al., 2024).

Binary metrics outside of verbatim memorisation have used membership inference
techniques that rely on the loss of individual examples and a set threshold to decide
whether it was likely that a specific example was included in the training set (e.g.
Kharitonov et al., 2021; Mireshghallah et al., 2022). And, finally, a third category
of work uses phenomenon-specific definitions of binary memorisation: Chang
et al. (2023) relied on the close accuracy of named entities to identify that ChatGPT
has memorised content from copyright-protected books, Haviv et al. (2023) measured
memorisation based on verbatim reproduction of specific words within idioms, and
Raunak and Menezes (2022) define extractive memorisation in NMT to refer to examples
for which models have memorised to produce the full translation after seeing only a
prefix of the source sentence.

Together, studies adopting various definitions of memorisation have identified data
properties, model features, and experimental setups that increase the chances of examples
being memorised, in models trained from scratch, pretrained models, and fine-tuned
models. Dominant contributing factors are large model sizes, data duplication, and
using longer prompts during extraction (Raunak and Menezes, 2022; Tirumala et al.,
2022; Carlini et al., 2022; Biderman et al., 2023), using larger input vocabulary sizes
(Kharitonov et al., 2021), and fine-tuning the head of a model (as opposed to full
fine-tuning or adapter tuning) (Mireshghallah et al., 2022).

Graded memorisation metrics and the long-tail theory Instead of considering memo-
risation as something that applies to only some examples in our training dataset, we
can view it as something that happens to all examples, to some extent, thus adopting a
graded metric. The most influential contribution to the discussion of graded memorisa-
tion metrics in recent years has been the account by Feldman (2020), whose theory was
later referred to as the long-tail theory (LTT). To discuss this, we briefly step away
from NLP again to think of deep learning, in general, and review related work from CV
before returning to applications within NLP. In chapter 3, we will put the LTT to the
test within the context of NMT.

Feldman explains why memorising training examples can co-occur with generalisation
by emphasising that the data distributions that underlie deep learning tasks are often
long-tailed. There can be many very infrequent output classes, and even within one class,
subpopulations vary in frequency. For instance, in image classification, subpopulations
of one class could differ by the object’s visibility in the image. When observing a
representative example of an atypical subpopulation in the training data, memorising that
example could positively influence the test set accuracy for that subpopulation. While
some atypical examples are true outliers instead of representing a rare subpopulation,
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these two types can be indistinguishable to the model. In data distributions where the
number of outliers is not excessive, and the total weight of all atypical subpopulations
is significant enough, memorisation of atypical examples can be a near-optimal strategy
for generalisation.

In the LTT, there is thus a notion of influence (Feldman and Zhang, 2020) that
training examples have on test examples. Assuming a learning algorithm A that is used
to learn model f using dataset D, a training example (xi,yi), a test example (xj ,yj)

and a performance metric M comparing f(xi) to yi, influence is defined as follows:

infl(A,D,i,j) = M
f←A(D)

(xj ,yj ,f)− M
f←A(D/i)

(xj ,yj ,f) (2.23)

Memorisation is then simply the self-influence of an example i, referred to as label memo-
risation (Feldman, 2020; Feldman and Zhang, 2020) or counterfactual memorisation
(CM) (Zhang et al., 2023):

CM(A,D,i) = M
f←A(D)

(xi,yi,f)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
‘IN’ performance

− M
f←A(D/i)

(xi,yi,f)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
‘OUT’ performance

(2.24)

This memorisation metric thus contrasts the performance on example i when models
have been trained on i (‘IN’ performance) to the performance the models would have
had, had i not been a training example (the ‘OUT’ performance, hence the ‘counterfac-
tual’ nomenclature). Note that this metric does not characterise which datapoints an
individual model instantiation memorises, but expresses how likely a datapoint is to be
memorised by a given architecture and training procedure.

Due to the leave-one-out notion that the definitions rely on, and the fact that deep
learning datasets often contain thousands or millions of examples, Feldman and Zhang
propose a method for approximating CM, training models on randomly sampled subsets
of D. To then compute CM for example i, we collect every model l for which (xi,yi) ∈Dl

in ΘIN,i (containing m models total), and gather the remaining k models in ΘOUT,i:

CM(i,ΘIN,i,ΘOUT,i
) =

1
m

m

∑
j=1

M(xi,yi,ΘIN,i
j )−

1
k

k

∑
j=1

M(xi,yi,ΘOUT,i
j ) (2.25)

Feldman and Zhang measured the CM and influence metrics for image classification,
using ResNet-50 (He et al., 2016) trained on Imagenet (Deng et al., 2009) and CIFAR-100
(Krizhevsky, 2009), and a simpler CNN trained on MNIST (LeCun et al., 1998). They
identified that removing examples with high CM harms the generalisation accuracy
more than removing random examples. Figure 2.7a includes examples from MNIST
with three different CM scores: low CM examples are ‘prototypical digits’, whereas
the others are atypical, ambiguous or mislabelled. Figure 2.7b illustrates the positive
influence atypical, memorised digits can have on test examples that resemble them.

Zhang et al. (2023) were the first to explore CM in NLP, computing CM scores for
2M examples by training transformer-based LMs. They linked CM to text simplicity –
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(a) CM scores for digits 2, 3, 5, 6

(b) CM (‘train’) and influence scores (‘test’)

Figure 2.7: Examples of CM and influence scores for MNIST data, as computed by Feldman
and Zhang (2020).

finding that high-CM examples have intermediate simplicity, while low-CM examples are
either very easy or very hard – examined CM per domain and determined the influence
of the number of models and training epochs used to approximate CM. They identified
that data duplication is associated with lower CM, confirming that CM measures a
different type of memorisation than the binary metrics from §2.2.2. They also measured
examples’ influence on unseen data, establishing that high CM examples have a larger
maximum influence than low CM examples. Although Zhang et al. highlight some
features that might lead to high CM when discussing the different domains – e.g. the
presence of non-English tokens and structured data like tabular texts – they did not
systematically analyse CM in relation to datapoints’ features, as we do in chapter 3.

Inspired by CM, Zheng and Jiang (2022) proposed a self-influence metric to quantify
the change in parameters when down-weighting a training example, to measure memori-
sation in sentiment analysis, natural language inference and question answering. They
confirmed that removing examples with high self-influence from the training set has a
larger negative effect on generalisation performance than removing random examples.

Raunak et al. (2021) computed approximated CM scores for NMT systems, by
training ten models on subsets of a 160k English-German translation dataset, with the
primary aim of showing the relation between CM and hallucinations. They compute
models’ hallucination tendency by perturbing source sequences and measuring how
often a perturbation can lead the model to emit a hallucination. They identify that
hallucinations are more prominent among examples with high CM. We return to CM
in chapter 3, where we study CM in NMT much more broadly, relating CM scores to
models’ generalisation performance, akin to Feldman and Zhang and Zheng and Jiang.
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Figure 2.8: Generic indication of the range of layers that have been pointed out as storing
memorised information.

2.2.3 Memorisation implementation

A final thread of related work we need to explore is that of the implementation
of memorisation, questioning which parameters, neurons or layers store memories
(focusing on localisation), how different components cooperate to retrieve memorised
information (focusing on memorisation mechanisms) and how we can change that
information (via model editing, since changing information might tell us something
about how those memories were implemented initially). To review this work, we first step
away from NLP again to learn from findings in CV, before elaborating on localisation,
model editing and memorisation mechanisms for factual knowledge in NLP. We end
with reviewing initial studies on verbatim memorisation, for which localisation is a
new and active area of research at the time of writing the thesis. In chapter 4 we
will focus on layer-based localisation of a specific type of memorisation, which is why
this subsection has a particular focus on analysing the different conclusions regarding
layer-based results, and we summarise those conclusions in Figure 2.8.

Noise memorisation in CV The observation of Zhang et al. (2017) that pretrained,
deep CNNs can interpolate training sets sparked interest in how memorisation affects
vision models internally. Two primary ways of studying that emerged, of which the
first one applies label perturbation to an entire image classification dataset and trains
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memorising networks that interpolate that noise. Ansuini et al. (2019) trained a CNN
from scratch on MNIST, showing that when randomly shuffling labels, the intrinsic
dimensionalities of hidden representations are much larger than those of a control
network in the final layers only. Cohen et al. (2018) compared multiple models, among
which a Resnet-based model, to a k-nearest neighbour classifier (k-NN) fit using the
models’ hidden representations, effectively using k-NN as a probe. For the generalising
networks, the k-NN probe starts to accurately match the models’ predictions from
lower layers onwards, but for the memorising networks, the predictions do not match
until the final few layers, indicating that memorisation likely does not occur until
those final layers. Morcos et al. (2018) trained 11-layer CNNs on CIFAR-10 using true
labels and randomised labels, and measured the representational similarity of hidden
representations using a CCA-based method (§2.1.4). They identified that networks that
generalise well are much more similar to one another than to memorising networks, and
that those differences are the most prominent in the final few layers.

Later work that studied memorisation localisation in CV uses individual networks
instead of relying on comparisons between generalising and memorising networks, by
comparing training data subsets. Baldock et al. (2021) established a positive correlation
between prediction depth in image classification (the earliest layer that predicts the
label) and example-level learning difficulty metrics. Stephenson et al. (2021) analysed
the hidden representations for image classification using CIFAR-100 and tiny ImageNet,
for multiple models among which ResNet-18. They permuted the labels of a training
data subset and studied the geometry of the hidden representations of regular and
memorised examples, measuring, for instance, the linear separability of classes. They
reported that memorisation of mislabelled examples occurs abruptly in late layers (e.g.
layer 15-20 in a 20-layer model) and late training epochs. Rewinding models’ final or
penultimate convolutional layer to earlier checkpoints partially reverted memorisation.

Contrary to earlier work, Maini et al. (2023) found that in partially mislabelled image
classification datasets (e.g. CIFAR-10, MNIST), memorisation is not confined to specific
layers but involves small sets of neurons dispersed across layers, for ResNet-9, ResNet-50,
and a vision transformer.6 Intervening by rewinding layers to earlier epochs or retraining
individual layers with clean data showed no single layer alone drives memorisation. A
gradient-based neuron search revealed that mislabelled examples required fewer neurons
to be zeroed out than clean examples, with these neurons distributed across layers for
both clean and mislabelled examples.

Although Maini et al. did not identify specific roles for deeper layers, their layer
rewinding experiments, in particular, do suggest that rewinding mid to upper layers
is more successful in reverting memorisation than rewinding lower layers. Figure 2.9

6The vision-transformer by Dosovitskiy et al. (2020) works akin to a regular transformer, but with
the input representations being patches of an image instead of token embeddings.
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Figure 2.9: Figure 16c from the appendix of Maini et al. (2023), showing how the accuracy
on clean (green) and mislabelled MNIST examples (red) decreases when rewinding individual
layers to earlier epochs, for three models when mislabelling 20% of the examples. To simplify
the visualisation, Maini et al. group layers into blocks for ResNet-50.

demonstrates this: if we disregard epoch zero (at which point the model has not learnt
the task), the layers that show the largest accuracy decrease for mislabelled examples
are four and seven, three and four, and four and five, for the three models, respectively.
This holds across models, datasets, and noise levels, except for the vision transformer.

Memorisation of factual knowledge NLP memorisation localisation studies have
primarily focused on factual knowledge. De Cao et al. (2021) first connected work from
CV to fact memorisation in transformer, and trained a hypernetwork to edit facts. Their
hypernetwork mostly edited the bottom layer of a six-layer transformer, and De Cao
et al. pointed out the contrast to findings from Stephenson et al. (2021), suggesting this
difference might be due to the change in modality.

Later work operated under the assumption of the knowledge neuron thesis,7 assuming
that facts are stored by and retrieved from transformer’s feedforward layer weights,
which act as a key-value memory (Geva et al., 2021), and that one may thus be able
to identify knowledge neurons inside the feedforward layers (Dai et al., 2022). The
knowledge neuron hypothesis inspired model editing techniques that mainly target the
feedforward layers, such as the methods proposed by Meng et al. (2022, 2023). Meng
et al. (2022) applied a two-step procedure of localising the layers that store facts, and
editing them afterwards. Localisation was performed with causal tracing, a method
that corrupts hidden representations with noise and assigns importance to layers in
which restoring the original representations recovers the original prediction. Causal
tracing was used to pinpoint a layer, after which the feedforward module in that layer

7The term was coined by Niu et al. (2024) to summarise the hypothesis underlying multiple related
studies. Niu et al. criticised the thesis since it oversimplifies knowledge storage. Instead, they suggested
focusing on network-wide circuits.
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was edited to modify factual memories. Early to mid-layers were most often selected by
causal tracing8 – e.g. in a 48-layer model, the layer importance increases up until layer
15, after which it starkly decreases. Meng et al. (2023) later extended the approach to
edit multiple layers at the same time, again based on the causal tracing results.9

In addition to identifying which layers are the most relevant, related work also
directly attempted to identify individual knowledge neurons. Dai et al. (2022) identified
them by integrating gradients using a fill-in-the-blank test for factual information, and
mostly found knowledge neurons in the top layers of BERT. They then successfully used
those neurons to update facts by partially modifying the second layer in the feedforward
modules. Similar findings have been reported in later work on knowledge neurons by
Zhao et al. (2024a), who selected neurons based on extreme activation values, and
Chen et al. (2024), who also used integrated gradients. Although Zhao et al. echoed
the finding of knowledge neurons primarily residing in the upper layers of multilingual
BERT, they did observe a relative increase of knowledge neurons in lower layers when
comparing results for Malay and Indonesian to English and German.

Work beyond model editing and knowledge neurons emphasises the relevance of
lower layers for fact retrieval: Haviv et al. (2023) analysed the memorisation of facts and
idioms in BERT and GPT-2 by projecting hidden representations into the vocabulary space.
They identified a two-phase process: the lower layers promote the correct prediction’s
rank, while the upper layers strongly increase the probability of that prediction. By
intervening in a feedforward sublayer, Haviv et al. demonstrated the significance of the
first phase, as earlier layer interventions were more likely to prevent the model from
emitting a memorised token, with the first three layers having the greatest impact and
the effect decreasing thereafter. Follow-up work by Geva et al. (2023) provided a more
fine-grained description of the mechanisms behind fact retrieval when predicting an
attribute based on a subject and relation: in GPT-2-XL and GPT-J, early feedforward
layers enrich the subject’s representation, early/mid attention layers pass information
about the relation to the final token, after which mid/upper attention layers integrate
information about the subject into the final token. By intervening in ten consecutive
layers, they identified that the attribute prediction accuracy starkly decreases when
intervening in the earliest feedforward layers. All in all, these two descriptions of
the mechanisms underlying fact and idiom retrieval emphasise the role of early layers
for storing memories, while explaining that all layers cooperate to produce correct
memorised predictions at the output level.

8This result is not specific to transformer: Sharma et al. (2024) found early/mid-layers to be
important when editing facts in Mamba.

9Note that Hase et al. (2023) found success in model editing to be unrelated to the layers selected by
Meng et al.’s localisation method, which means that model editing might be an unreliable way to check
where facts are stored.
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Verbatim memorisation Memorisation localisation has predominantly focused on
facts, but studying the implementation of verbatim memorisation has recently gained
some traction thanks to open science initiatives publishing pretraining corpora. Chang
et al. (2024) evaluated localisation methods on verbatim memorisation in Pythia and
GPT-2-XL. They (1) trained models to memorise sequences using fixed neurons per
layer and tested whether localisation identifies these, and (2) identified memorised
pretraining sequences and tested whether dropping top-ranked neurons prevents recall.
Most experiments use a fixed neuron count per layer, limiting insight into the layers’
roles. Two additional experiments, however, touch upon the roles of layers: for (1)
they also considered localising neurons globally instead of per layer, in which case
localisation primarily points to bottom layers, and for (2) they considered dropping
out neurons in individual layers instead of all layers, in which case preventing recall
gradually improved with layer depth. Dropping neurons globally was more successful
than targeting individual layers, which underscores memorisation’s distributed nature.
Stoehr et al. (2024) studied a 12-layer model (GPT-Neo-125M, also analysed in chapter 4)
to identify components responsible for 50-token verbatim memorisation. They performed
parameter gradient attribution, focusing on the maximum value per weight matrix,
per layer. For memorised (but not non-memorised) paragraphs, those values were
particularly large for weights from the attention module in the lowest layers, except the
bottom-most layer, and those weights could be edited to revert memorisation. They
pointed to a specific attention head in the second layer as attending to rare tokens,
hypothesising that these tokens act as ‘triggers’ for retrieving memorised paragraphs.

When considering all of these findings for factual memories and verbatim memorisation,
it is evident that many conflicting conclusions have been drawn regarding memorisation
localisation in transformer-based LMs. Yet, it is unclear where the disagreement comes
from – e.g. using different models, different localisation methods or different evaluation
metrics. As a result, we cannot determine whether these findings truly contrast with
the noise memorisation conclusions from CV. In chapter 4, we will contribute a missing
piece to this puzzle by analysing noise memorisation in NLP.

2.3 Compositionality and formulaic language

We will now review the topic of compositionality and its relation to formulaic lan-
guage (§2.3.1). Interest in the compositionality of language has, since the late 2010s,
sparked interest in how well NLP models’ generalisation capabilities reflect language’s
compositional nature, giving rise to a new type of evaluation dubbed compositional
generalisation evaluation. The general introduction will be followed by a summary of
work on compositional generalisation (§2.3.2) and work on how NLP models handle
formulaic language (§2.3.3) that appeared prior to the publication of chapters 5 and 6.
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2.3.1 Compositionality as a continuum

Gotlobb Frege is generally taken to be the first to have formulated the principle
of compositionality along with the claim that it is an essential feature of natural
language (Frege et al., 1892), but the general idea underlying the principle has been
discussed by many others (Carnap, 1947; Katz and Fodor, 1963; Putnam, 1975, i.a.).
Intuitive arguments exist in favour of natural language being compositional, of which
productivity (we can produce and understand infinitely many new meaningful sentences)
and systematicity (our ability to understand certain expressions, such as “John loves
Mary” being linked to our ability to understand others, such as “Mary loves John”)
are the most well-known (e.g. Fodor, 1987). Pagin and Westerståhl (2010b) outline
these arguments, along with many others. Rather than providing arguments for why
compositionality would hold, let us focus on definitions of compositionality and the
relation to formulaic language understanding, which are of relevance to this thesis.

Definitions and problem cases Let us consider the definition of Pagin and Westerståhl
(2010a) as a starting point: assume that a grammar E consists of a set of linguistic
expressions E, a set of atoms (words) A, and a set of syntactic functions Σ that can be
recursively applied to generate expressions from atoms.10 Using this terminology, we
can build grammatical terms, for instance, assuming β,γ,δ ∈Σ representing functions to
construct a noun phrase, a verb phrase and a sentence, “The man kicked the ball” can
be represented as δ(β(the,man), γ(kicked,β(the,ball))). We then need a function µ

to represent the semantics of our grammar, yielding what has been referred to as the
function version of the principle of compositionality (Pagin and Westerståhl, 2010a,
p.254):

For every rule α ∈Σ there is a meaning operation rα such that if α(u1, . . . ,un) has
meaning, µ(α(u1, . . . ,un)) = rα(µ(u1), . . . ,µ(un)).

The definition presupposes that sub-terms of meaningful terms are also meaningful.
In formal semantics, a standard approach to defining meaning compositions has been
through function application, e.g. via lambda calculus. More recent approaches, however,
adopt richer lexical meaning representations than lambda terms can offer, such as through
distributional semantics (Martin and Baggio, 2020).

Applying the basic definition of Pagin and Westerståhl recursively11 and bottom-up
yields a rather strict interpretation of compositionality. Weaker versions relax the

10This is a simplification, omitting the value function V that can accommodate homonymous atoms
mapping to the same expression. For a more precise description, see Pagin and Westerståhl (2010a).

11Note that the definition is given by recursion over syntax, but that standard semantic theories also
define µ to be recursive (Pagin and Westerståhl, 2010a, p.254). The type of recursion considered here is
somewhat different from the typical interpretation in computer science; due to µ mapping a term to an
abstract semantic representation, it cannot be applied to its own outputs.
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requirement that the meaning of a complex term is computed based on the meanings
of the immediate sub-terms and the top-level syntactic operation, with the extreme
case assuming that the meaning of an entire expression depends only on the meanings
of the atoms and the global syntactic structure. We can relate this to the less formal
definition introduced in chapter 1, by Partee (1984, p.153):

The meaning of an expression is a function of the meanings of its parts and of the
way they are syntactically combined.

In Partee’s definition, no explicit restrictions are placed on the relationship between
compound expressions and their parts. The type of function that relates those two
components is unspecified and could thus take into account, for instance, the sentence’s
global syntactic structure, or even include external arguments, such as discourse. Fur-
thermore, it is ambiguous what ‘they’ refers to: the parts themselves or the meanings
of the parts – i.e. do parts receive meaning in isolation or in context? A permissive
reading is, therefore, similar to the weakest version discussed above (see Szabó, 2012,
for an elaborate discussion of the many readings of Partee’s definition). The many
definitions have been referred to as ranging from weak to strong, but also from top-down
to bottom-up (Baggio et al., 2012) or from global to local (Szabó, 2004). In chapter 5
we primarily refer to ‘local’ vs ‘global’, but the underlying considerations are similar to
what is outlined above, considering strict vs weak (with the exception that we do not
consider global compositionality to include extra-sentential inputs within the context of
analysing computational models).

The appropriate definition of compositionality for natural language and natural
language problem cases for compositionality have been widely discussed. Commonly
mentioned issues are that the principle is trivially true (e.g. Horwich, 2001) or formally
vacuous (e.g. Zadrozny, 1994) – since for any language we could construct syntactic
functions and meaning operators that make the language compositional – or that radical
contextualism means that the literal meaning of expressions is never adequate if their
meaning always varies from context to context (e.g. Travis, 1985). If meaning is always
contextual, we cannot capture infinitely many contexts in a finite way.

Examples of problem cases are belief sentences (“You believe she is a child doctor”
can be true and “You believe she is a paediatrician” can be false, even if ‘child doctor’
and ‘paediatrician’ are synonymous; Pelletier, 1994), quotation (“I like Tully” and “I
like Cicero” are synonymous if Tully is Cicero, yet, that does not mean “I like ‘Tully’”
and “I like ‘Cicero’” are synonymous; Pagin and Westerståhl, 2010c) and fictional
discourse (the fact that the two peanuts in “The peanut was in love” and “The peanut
was salted” do not appear synonymous demonstrates the context-sensitivity of meaning
compositions; Baggio et al., 2012). Lastly, most relevant to the chapters in this thesis,
idioms have been pointed out as a problem case (Westerståhl, 2002). If we consider the
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Figure 2.10: Three simple phrases with similar syntactic constructions but very different
meanings. The meaning of (1) appears fully compositional; the meaning of (2) is less
compositional but can be made compositional when interpreting “kicked” as “gave up”. In
(3), “kicked the bucket” can only be explained by treating the phrase as one atomic term.

meaning of δ(β(the,man),γ(kicked,β(the,ball))), we cannot use the same functions
β and γ (and meaning operators rβ and rγ) when representing the meanings of “the
man kicked the bucket” and “the man kicked the habit” – meaning that the man has
died or has given up a habit, respectively. We would have to extend the syntax and
semantics to account for the different types of compositions involved in these new
phrases, either by adding new operators or introducing some phrases as atoms within
our grammar. There is no one-size-fits-all solution, since idioms themselves are not
uniform, as Figure 2.10 illustrates. We might be able to represent the meaning of “kick
the habit” with a new function that transforms “kicking” into “giving up”, but we
cannot treat “kick the bucket” in the same way. As a result “kick the habit” appears
more compositional than “kick the bucket”. Idioms are just one example here posing
issues for compositionality, but similar arguments could be made for other types of
figurative and formulaic language, such as proverbs or non-compositional compounds.

Nonetheless, it is widely accepted that natural language is compositional, even if
we cannot agree on one definition (Dowty, 2007). Context and figurativeness influence
expressions’ meanings, but there is value in capturing literal meaning through syntax
and semantics. Baggio (2021, p.8), for instance, proposes a competence version of
the compositionality definition, stating that there is at least one interpretation of a
compound expression that is determined only by the meanings of its parts and the
way they are syntactically combined.12 At the same time, it is well-known that not all
phrases are equally compositional. We could extend our grammars to include all known
figurative and formulaic phrases (e.g. Westerståhl, 2002, shows how to incorporate
idioms in compositional semantics), but what if a new metaphor comes along? Do we
continually invent new meaning operators? Instead of claiming that natural language
is fully compositional or choosing a definition, I acknowledge that natural language
exists along a compositionality continuum. I will default to referring to idioms as non-
compositional, but realise that that is a matter of nomenclature rather than principle.

For the purpose of analysing computational models of language, instead of being
hung up on an exact definition of compositionality, it is important to acknowledge the

12Whether or not this is true could in itself be debated, when one considers phrases like “by a dint
of”, “spick and span”, and “odds bodkins”, which all contain words we no longer use outside of these
contexts. As a result, these phrases do not appear to have a literal default reading.
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representational co-existence that humans have (Baggio, 2021), where they can interpret
most natural language expressions both compositionally and non-compositionally. That
this applies to human formulaic understanding is elaborated upon in the next paragraph,
and that this is (or should be) the case in computational models is revisited in chapters 5
and 6.

The representational co-existence of formulaic sequences In §1.2, I previously
introduced the notion of formulaic sequences. They differ from novel sequences in
primarily four properties (van Lancker Sidtis, 2012): Firstly, in terms of form: they
are not as flexible as other sequences since they only preserve their formulaic meaning
when presented in a certain form, e.g. “he kicked a bucket” no longer means ‘dying’.
Secondly, in terms of meaning, since they signal a complex meaning that goes beyond a
straightforward composition of the terms contained in the sequence. This meaning is
conventionalised and shared by speakers of a language. Thirdly, there are contextual
conditions for when usage of formulaic sequences is appropriate and context determines
whether or not a sequence is formulaic (“The man kicked the bucket off the pavement”
is not formulaic). Lastly, speakers need personal knowledge of a formulaic sequence;
they need to memorise the conventionalised meaning and the properties in order to
use or understand the sequence appropriately. While the connection to memorisation
might not be as apparent to native speakers of a language, the wide range of literature
dedicated to strategies for teaching formulaic sequences to second language learners (e.g.
see Pellicer-Sánchez and Boers, 2018, for an overview), and the evidence of dedicated
neural substrates for formulaic sequences (Wray, 2002) underscore their special nature.

‘Formulaic sequence’ is an umbrella term for many different types of sequences,
that themselves are on a continuum of being more novel (compositional) to more
reflexive (non-compositional): collocations (e.g. “to make the bed”) for instance are
considered more novel than idioms, proverbs and expletives (e.g. “good heavens”),
which are themselves considered to be more novel than pause fillers, cries and vocal
gestures (van Lancker Sidtis, 2012). Because the thesis will primarily focus on idioms (in
chapters 5 and 6, with proverbs and non-compositional compounds also being considered
in chapter 3), I do not elaborate on the different types here. For idioms, their formulaicity
is dependent on their figurativeness: while figurative language and formulaic language
are sometimes taken to be synonymous, there are differences, for instance, in the case
of metaphors. Although all metaphors are figurative, only conventionalised metaphors
(such as “couch potato”) are formulaic, since only conventionalised phrases can be
memorised, whereas novel metaphors need to be processed on-the-fly. The context
modulates whether the words in an idiom are used figuratively or literally, and they are
only to be understood non-compositionally in a figurative context.

Because of this potential competition between interpretations, idiom processing in
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humans has been widely discussed. Opposing views on the matter can be characterised
as literal-first vs figurative-first. An example of the former is the standard pragmatic view
suggesting humans attempt a literal interpretation first and only consider a figurative
one in case of a contextual discrepancy (Bobrow and Bell, 1973; Grice, 1975, 1989). An
example of the latter is the direct access view, suggesting that the figurative meaning
can immediately be retrieved (Gibbs Jr et al., 1994) since figurative phrases have
processing advantages over literal ones. However, this advantage mainly holds for
very conventionalised figures of speech and ignores the impact of context. Context can
facilitate fast processing of both the literal and figurative meaning, depending on whether
the context is literally or figuratively biased (Holsinger, 2013). The more modern hybrid
view posits that idioms are simultaneously processed as a whole and word for word
(Caillies and Butcher, 2007). The processing speed and retrieval of the figurative meaning
then depend on the idiom’s semantic properties, and the context (Cain et al., 2009;
Vulchanova et al., 2019). Examples of semantic properties are familiarity (how often
one encounters the idiom) or meaningfulness (how well one knows the idiom’s meaning)
(e.g. Bulkes and Tanner, 2017). The most widely discussed property is decomposability
or compositionality (Nunberg et al., 1994). The prototypical example of “kick the
bucket” would be non-compositional, whereas, as discussed above “kick the habit” is
more compositional once the metaphorical meaning of “kicking” is known.

Thus, not only do types of formulaic phrases lie on a compositionality continuum,
but individual idioms exist along a continuum, too. In chapter 6, we lack the appropriate
resources to subcategorise the idioms analysed based on their properties. However, we
do ground our analyses in this literature by studying (1) the role that context plays in
idiom disambiguation, and (2) the extent to which words in an idiom act as one phrase.

Compositionality and idioms in the context of translation Before moving on to
discussing related work from NLP, I will comment on how (non-)compositionality has
played a role in MT and motivate MT as a testbed for evaluating models’ compositional
behaviour. The principle of compositionality has explicitly informed the creation of
some traditional MT systems (des Tombe et al., 1985; Rosetta, 1994). Janssen (1998,
p.51) states the principle of compositionality of translation as follows:

The translation of a compound expression is a function of the translations of its
parts and of the rule by which the parts are combined.

Different from other NLP tasks – e.g. summarisation, which removes input content,
or sentiment analysis, where meaning beyond sentiment is irrelevant – MT should be
precisely meaning-preserving, which a compositional translation would be. However,
designing a system for compositional translation encounters challenges akin to defining
compositionality itself. Strictly compositional translations often yield nonsensical
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outputs: a correct translation might have different syntactic structures than the source
sequence, and overly compositional translations of special terms in the source – such the
quoted term in “‘Bucket’ has six letters”, or the idiom in “The man kicked the bucket”
– are simply incorrect. In translation, the ‘function’ from the definition above should
be flexible enough to handle such cases yet strict enough to capture translations of a
potentially infinite number of sentences in a finite system – e.g. when conjoining two
sentences, we probably do want the translation of the conjunction to be a conjunction
of the translation of the parts. Thanks to these nuances and MT’s meaning-preserving
nature, we deem it a suitable and interesting testing ground for evaluating models’
compositional capabilities when dealing with natural language in chapter 5.

While translating idioms compositionally is often incorrect, it is not always clear
what the correct strategy would be. Baker et al. (1992) discuss strategies for human
translators: using an idiom from the target language of similar meaning and form, using
an idiom from the target language with a similar meaning and a different form, copying
the idiom to the translation, paraphrasing the idiom or omitting it. In the absence of
idioms with similar meanings across languages, paraphrasing is most common. Since no
comprehensive database aligns the world’s idioms, automating translation strategies for
idioms is challenging, and Baker et al. argue that native speakers are best suited for the
task. One project studying the cross-lingual occurrences of idioms is that of Piirainen
(2012), which identified about 500 idioms that (mostly Indo-European) languages have
in common. When we analyse idiom translations in chapter 6, we unfortunately cannot
accurately distinguish between all translation types of Baker et al. in an automated way.
Instead, our main focus will be on distinguishing paraphrases from literal translations,
but the reader should remember that compositional translations of idioms are not always
incorrect due to the occasional cross-lingual sharing of figurative units.

2.3.2 Compositional generalisation evaluation

Humans can produce and understand language in a compositional manner, but does the
same hold for computational models? This has been widely debated for predecessors
of the modern neural network: Fodor and Pylyshyn (1988) argued that connectionist
models, as associative mechanisms with distributed representations, could not capture
the structure and combinatorial nature underlying language. Reviewing their arguments
and the discussions that followed is beyond the scope of this thesis, but it should be
noted that what became known as compositional generalisation evaluation is essentially
a ‘second wave’ of interest in models’ compositional abilities. In NLP, this second wave
started around 2018. Liška et al. (2018) presented a lookup tables task, demonstrating
that recurrent sequence-to-sequence models struggle with composing atomic functions,
and that although generalising models can be found when training thousands of networks,
they are extremely rare. Lake and Baroni (2018) and Loula et al. (2018) presented
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the widely adopted SCAN task, which constitutes a simple navigation task with inputs
such as “jump twice and walk”, mapped to a sequence of actions (“JUMP JUMP WALK”).
Recurrent models struggled to generalise to longer sequences than the ones seen during
training, failed to perform zero-shot generalisation for actions only seen without context
during training, and failed to compose function words in novel contexts.

In the years following, a range of datasets were proposed, and the corresponding
results underscored models’ inadequacy to generalise outside of the IID paradigm,
for both recurrent and transformer models. Yet, different from other types of out-of-
distribution (OOD) evaluation (e.g. across-domain generalisation, see Hupkes et al., 2023,
for an overview of OOD evaluation types in NLP)13, compositional generalisation is in
itself underspecified due to the potentially infinitely many new ways in which language
can be composed: how exactly do we test whether models have human-like compositional
abilities then? The evaluations of Liška et al. and Lake and Baroni highlight the
importance of recombining training commands in test data, length generalisation and
zero-shot generalisation. In Hupkes et al. (2020)11, my co-authors and I took a more
principled approach by grounding five experiments in the literature on compositionality
(a small subset of which we reviewed in §2.3.1), proposing the following five tests:

1. Systematicity: do models understand input token combinations unseen during
training?

2. Productivity: do models generalise to longer sequence lengths than observed during
training?

3. Substitutivity: do models assign the same output following synonym substitution
in the input?

4. Localism: do models assign the same output to local and global compositions of
the same input?

5. Overgeneralisation: do models overgeneralise exceptions to rules?

Hupkes et al. apply these tests to the PCFG SET dataset, a sequence-to-sequence task
that implements string manipulation, e.g. “remove_first A B C , echo D E F” yields
“D E F F”, demonstrating strong performance decreases for the first three tests when
compared to IID evaluation. Using the final two tests, they show that the neural models
evaluated are not locally compositional, and that while they initially overgeneralise
exceptions, they do memorise them later on in training. We adopt three of these tests
in chapter 5, when evaluating compositional abilities of NMT systems.

In addition to artificial sequence-to-sequence tasks being used to test compositional
generalisation (e.g. Bastings et al., 2018), semantic parsing and MT emerged as popular
testing grounds. For semantic parsing, Finegan-Dollak et al. (2018) published new
train-test splits for existing datasets that do not repeat the same SQL query in both

13I was a core contributor of this article, yet it is not a part of this thesis.
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train and test data. Kim and Linzen (2020) and Keysers et al. (2019), instead, present
entirely new datasets. Kim and Linzen design COGS, a semantic parsing dataset with
OOD evaluation targeted at assessing a wide range of lexical and structural types of
generalisation. Instead of targeting manually selected types of generalisation, Keysers
et al. measured compositional generalisation using a maximum compound divergence
metric, a corpus-wide metric that quantifies the novelty of token combinations in the
evaluation set with respect to the training data. For MT, Lake and Baroni (2018)
presented a toy task for evaluating the generalisation for a primitive introduced during
training, Li et al. (2021a) designed CoGnition, an English-Chinese dataset with simple
sentences and a generalisation set with novel token combinations, and Raunak et al.
(2019) investigated the systematicity and productivity properties of MT systems through
analyses of their hidden representations. The general consensus within this line of work
is that when presented with many types of tests for compositional generalisation,
performance drops substantially compared to IID evaluation.

What most of these datasets have in common is that the data used to study
compositional generalisation is either fully synthetic (not even using natural language)
(e.g. Liška et al., 2018; Hupkes et al., 2020), is generated from scratch via a grammar
or heuristics using a vocabulary with words from natural language (to generate simple
but natural-sounding sequences) (e.g. in case of Kim and Linzen, 2020; Keysers et al.,
2019), or is selected because of its simplicity, excluding constructions that contribute to
the complexity of natural language, such as polysemous words or metaphors (Li et al.,
2021a). To address this issue for semantic parsing, Shaw et al. (2021) adopted a variant
of Keysers et al.’s metric but applied to conventional semantic parsing datasets. Yet,
at the time of writing chapter 5, no existing approach had discussed compositional
generalisation in the context of MT for systems trained on regular, natural language
corpora. MT is well-aligned with the principle of compositionality thanks to its meaning-
preserving nature, while also addressing a practical and important problem, without
oversimplifying the (non-)compositional nature of language. Redefining tests for that
context is one of the contributions of that chapter.

Parallel to the introduction of datasets for compositional generalisation, a range of
methods have been proposed to improve models’ compositional abilities, with notable
trends being the development of specialised architectures (e.g. Korrel et al., 2019; Li
et al., 2019; Russin et al., 2020; Liu et al., 2020), data augmentation and manipulation
methods (e.g. Andreas, 2020; Herzig et al., 2021; Akyürek et al., 2021; Oren et al.,
2021; Qiu et al., 2022), auxiliary training objectives (e.g. Jiang and Bansal, 2021) and
meta-learning approaches (e.g. Lake, 2019; Conklin et al., 2021), and the identification
of simple tips and tricks for the experimental setup that can already boost performance
(Csordás et al., 2021; Ontanon et al., 2022). Since many of these approaches cannot be
applied when training models such as NMT systems on natural language, or have not
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been shown to scale to more complex tasks than originally evaluated on (Furrer et al.,
2020), further reviewing these methods lies outside of the scope of this thesis.

2.3.3 Formulaic language understanding in NLP

Reports of how formulaic language poses problems for NLP systems have been around for
decades. Sag et al. (2002) laid out challenges related to English (idiomatic) multi-word
expressions and strategies for how to explicitly encode them in a grammar. In the
years that followed, the tasks of multi-word expression identification and disambiguation
gained traction, with the research being propelled by initiatives such as dedicated
workshops (e.g. Tanaka et al., 2004; Moirón et al., 2006; Anastasiou et al., 2009).
Models for idiom understanding evolved from rule-based systems to corpus-driven
statistical methods in the 2000s (see Rayson et al., 2010, for an overview of approaches),
to (contextualised) embedding-based approaches in the last decade (e.g. Shwartz and
Dagan, 2019). In chapters 5 and 6, we examine idioms in the context of NMT, focusing
on how translations evolve during training and which internal mechanisms support
non-compositional outputs.

Idioms in machine translations Idiom understanding is most commonly investigated
through the task of idiomaticity detection directly. However, models’ lack of formulaic
language understanding negatively affects performance in other tasks, too, although this
is not always well-documented due to a lack of resources for quantifying those effects.
MT is one of the tasks negatively affected by this – e.g. Santos (1990) already proposed
a specialised system to handle non-compositional translations. Only a limited number
of articles have reported on the effects of idioms on NMT systems, among which are
Isabelle et al. (2017), who created idiom challenge sets for English-French translation,
Shao et al. (2018), who compiled a dataset of Chinese-English idiom translations and
Rikters and Bojar (2017) and Fadaee et al. (2018), who filtered existing MT datasets for
idiomatic examples for English-Latvian/Czech and English-German MT, respectively.
The results all demonstrate a decrease in performance for idiomatic examples compared
to conventional test sets14 and Shao et al. emphasised a common error type in idiom
translations, namely, overly literal translations. They introduced a blocklist with literal
translations of the words contained in idioms, used to identify such errors. In chapters 5
and 6, we adopt a similar method when analysing transformer’s translations of idioms.

At this point, it is worth adding a caveat. Most articles discussing low-quality idiom
translations rely on standardised NMT evaluation metrics based on n-gram overlap
between system and gold-standard translations, such as BLEU. As reviewed in §2.3.1,

14These articles predominantly focus on recurrent models; we include them for completeness, but
focus on transformer, ourselves. In §6.6 we elaborate on work that appeared after the publication of
chapter 6 that does adopt transformers.
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multiple strategies exist for translating idioms, and when an equivalent target idiom
does not exist, paraphrasing is preferred. However, there is often more than one valid
paraphrase. For instance, in case of “out of the blue”, which could map to “uit het niets”
(“out of nothing”), “plotseling” (“suddenly”), or even “als donderslag bij heldere hemel”
(“like a thunderclap in a clear sky”). As a result, n-gram overlap might underestimate the
quality of systems’ translations when models paraphrase idioms differently from the gold
standard. While metrics’ insensitivity to paraphrasing is not unique to idioms, it is likely
more prominent for non-compositional than for compositional phrases, although this
has not been quantified by previous work. Applying semantics-aware neural evaluation
metrics is expected to partially alleviate this problem. At the same time, even if our
evaluation metrics cannot exactly quantify the magnitude of the problem, we can still
confidently say that models do struggle with idiom translations; studies that include
human annotators in the evaluation process confirm this (e.g. Isabelle et al., 2017;
Avramidis et al., 2019).

Techniques for improving idiomatic translations include extending the training set
with more examples of idiomatic translations (Rikters and Bojar, 2017; Zaninello and
Birch, 2020), explicitly annotating the idiom in the input (e.g. by encoding an idiom as
one input word, Zaninello and Birch, 2020) and fusing representations from a pretrained
model like BERT with NMT systems’ representations (Huang et al., 2021).

Analysing transformer’s representations for formulaic language Little is known about
what enables the detection of idioms within NMT systems. For this reason, we draw
on more general findings concerning how formulaic and figurative language influence
the hidden representations of transformer – a key focus of chapter 6. Several studies
have used hidden representations to distinguish figurative from literal occurrences of
various linguistic tropes. Shwartz and Dagan (2019) studied verb-particle constructions,
light verb constructions, noun compounds (NCs) and adjective-noun pairs. Using
contextualised representations (among which those of BERT), they identified that models
are better at detecting figurative meaning shift than at predicting implicit meaning –
e.g. a model might be able to identify that “a hot argument” is figurative, but struggles
with determining whether the phrase conveys temperature. Kurfalı and Östling (2020)
detected idioms based on the dissimilarity of BERT’s representations of the potentially
idiomatic expression and its context, assuming that contextual discrepancies indicate
figurative usage. García et al. (2021a,b) examined how contextualised representations
(including those of BERT) represent figurative and literal NCs, using in-context and
out-of-context representations. They demonstrated that the context of NCs hardly
affects whether the representations encode figurativeness, and that the representations
do not adequately capture non-compositionality since synonym replacements hardly
affected the representations of non-compositional NCs. In search of the idiomatic key of
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verb compounds (the part of the input that cues idiomatic usage), Nedumpozhimana and
Kelleher (2021) trained a probing classifier to distinguish literal usage from figurative
usage. They then compared the effect of masking the compound in the input to masking
the context on the classifier’s performance and concluded that the idiomatic key mainly
lies within the compound itself, although some information comes from the surrounding
context. Taken together, these analyses suggest that hidden representations can, to
some extent, be used to determine whether transformers capture idiomaticity, but the
context may be insufficiently leveraged when disambiguating figurative expressions.

In chapter 6 we both analyse hidden representations and examine transformer’s
attention patterns for idioms. Little is known about how formulaic language affects
attention mechanisms, though related research has examined ambiguous nouns. That
type of ambiguity differs from idiomaticity due to the absence of non-compositionality,
but the challenge of disambiguation is similar. Tang et al. (2019) demonstrated that
noun ambiguity can be reliably predicted from hidden representations, and trans-
former’s self-attention patterns in the encoder reflect this ambiguity through more
distributed weights across the context for ambiguous nouns. However, cross-attention
in transformers appears not to contribute meaningfully to disambiguation; Tang et al.
(2018) found that ambiguous nouns received more cross-attention than non-ambiguous
ones during translation, suggesting that cross-attention weights alone do not facilitate
disambiguation.wen
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Now that we have reviewed the background on transformer models, and the general topics
of memorisation and (non-)compositionality, let us dive into three key open questions
pertaining to memorisation: why are certain datapoints more likely to be memorised
than others, is data memorisation beneficial for models’ generalisation performance, and
which internal parts of a model are the most crucial for memorising specific datapoints?
The two chapters that follow explore these questions through distinct experimental
setups. Whereas chapter 3 focuses on memorisation from the data perspective, chapter 4
shifts the focus to model internals, examining which of transformer’s layers implement
memorisation most.

When focusing on the data perspective first, it is evident that for some examples,
models produce the same prediction independent of whether they were seen during
training, whereas other examples must be memorised during training, or else models
would never predict the corresponding targets. This is not a binary distinction; when
presenting a model with millions of training examples, those examples will vary in the
extent to which they require memorisation. In chapter 3, based on Dankers et al. (2023),
I quantify that variance for the task of NMT by using continuous metrics to put training
examples on so-called ‘memorisation maps’. Using those maps, I study which examples
are memorised most, how surface-level features influence a datapoint’s position on the
map, and how the presence of examples with specific memorisation scores in the training
set is related to models’ generalisation performance.

I turn to model-internal mechanisms in the chapter that follows: chapter 4, based
on Dankers and Titov (2024), examines which layers are most involved in the memori-
sation of mislabelled examples, when performing natural language classification using
transformer-based LMs. The focus on mislabelled examples provides a controlled setting
to isolate the effects of memorisation; it allows us to focus on the internal memorisation
mechanisms without having to worry about the fact that memorisation is not always
that clear-cut (as emphasised in chapter 3). In this chapter, too, we focus on the
memorisation-generalisation connection by studying a hypothesis suggesting that earlier
layers are more involved in implementing generalisable features and that deeper layers
specialise and memorise.



Chapter 3

A memorisation–generalisation
continuum of data

3.1 Introduction

When training neural networks, we aim for them to learn a generic input-output mapping
that does not overfit on the examples in the training set and generalises to unseen
examples. In other words, we expect models to generalise without fully memorising
the training set. However, adequately fitting a training dataset that contains natural
language data inevitably means that models will have to learn the idiosyncrasies of that
data, and it, therefore, does require memorising subsets of the training set (Feldman,
2020; Zheng and Jiang, 2022; Zhang et al., 2023). What models do and do not memorise,
and how that relates to their performance, remains quite elusive. Both memorisation and
task performance increase with model size (Carlini et al., 2022), and models memorise
more than we would want them to. ChatGPT can recall detailed information from its
training data, such as named entities from books (Chang et al., 2023), GPT-2 memorises
PII (Carlini et al., 2021), and for some source sentences that share a common prefix,
transformer NMT systems have memorised to always emit the same translation (Raunak
and Menezes, 2022). And yet, models do not always memorise what we would want
them to – e.g. similar to other NMT systems, mBART was found to provide overly literal
translations of idioms, signalling a lack of memorisation (Baziotis et al., 2023). These
examples illustrate the multi-faceted relation between memorisation and generalisation.
As discussed in §2.2, memorisation is no longer considered solely detrimental in NLP,
and deep learning more broadly. Memorisation of random data can be benign when
models maintain a low generalisation error (Zhang et al., 2017; Bartlett et al., 2020),
and memorisation of long-tailed data distributions has been argued to be beneficial for
generalisation performance (recall Feldman’s LTT discussed in §2.2.2).

In this chapter, we get a step closer to understanding the relation between memorisa-
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Figure 3.1: Illustrative summary of findings for different areas of the memorisation map.
Counterfactual memorisation subtracts the y-coordinate from the x-coordinate.

tion and datapoints’ characteristics for NMT, and put the LTT to the test for the NMT
setting, thus contributing to the thesis’s overarching questions RQ1 “What characterises
memorised examples?” and RQ3 “To what extent are memorisation and generalisation
at odds with one another?”. We train NMT systems from scratch and put 5M examples
from five language pairs on a memorisation map (as detailed in §3.2), constituting a
continuum between memorisation and generalisation. The map is centred around the
counterfactual memorisation (CM) metric (Feldman and Zhang, 2020) (see §2.2.2).
Using the map, we address the following sub-questions, for which we illustrate takeaways
and interesting findings in Figure 3.1:

1. How do characteristics of datapoints relate to their position on the memorisation
map? In §3.3, we compute 28 quantitative features and annotate a data subset
manually using 7 additional features. We discuss how features such as source-target
similarity, input and output length, token frequency and tokens’ segmentation
relate to the memorisation map.

2. How do datapoints containing formulaic phrases stand out on the memorisation
map? Although the majority of the experiments in this chapter pertain to all
training datapoints, we include an intermezzo in §3.4, to examine memorisation
scores of source sequences that contain proverbs, idioms and non-compositional
compounds. While we would want these examples to be memorised more, they are
memorised less, emphasising that what is actually memorised is not necessarily
what should be memorised.

3. Can we approximate memorisation metrics using datapoints’ characteristics? In
§3.5, we use datapoints’ characteristics to predict memorisation values using
small regression models to consolidate findings from §3.3, to compare different
languages to one another and to understand whether resource-intensive mem-
orisation computation has cheaper approximates. We find that the regression
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models generalise cross-lingually: characteristics’ relation to memorisation is
largely language-independent for the five language pairs we include.

4. How does training on examples from different regions of the memorisation map
change models’ performance? Finally, we relate different parts of the map to the
quality of NMT systems in terms of BLEU, COMET, targets’ log-probability and
models’ hallucination tendency (§3.6). Our results confirm previous work from
other tasks – examples with high CM are most relevant for models’ performance –
yet there are caveats worth mentioning, in particular for the hallucination tendency.

After elaborating on the experiments, we end the chapter with a discussion (§3.7),
commenting on the limitations of our approach, relevant work that appeared after the
publication of this chapter, and how we think our results and data could benefit work
going forward. In §2.2.2, we reviewed prior work for this chapter and already noted that,
for NMT, memorisation is not that well explored. Most relevant is the work of Raunak
and Menezes (2022) and Raunak et al. (2021). Raunak and Menezes computed extractive
memorisation, a binary metric that identifies source sentences with a prefix for which
models generate the same translation, independent of the prefix’s ending. Raunak et al.
computed CM scores in a low-resource NMT setup to show that hallucinations are more
prominent among examples with higher CM values. We, too, treat memorisation as a
graded phenomenon by using CM-based metrics. Whereas Raunak et al. solely explore
CM in the context of hallucinations, we build a multilingual resource of memorisation
metrics, examine the characteristics of datapoints that influence their position on the
memorisation map, and investigate the relation to models’ performance.

3.2 Experimental setup

This section details the memorisation metrics employed and the experimental setup for
the model training that is required to compute those metrics.

Memorisation metrics To obtain a graded notion of memorisation, we employ the
CM metric of Feldman and Zhang (2020) and Zhang et al. (2023) as detailed in
Equation (2.24). The original CM formulation relies on a leave-one-out principle,
which is too expensive computationally. We thus approximate CM as laid out in
Equation (2.25): we train models on 50% of the training set and, afterwards, compute
the ‘IN’ and ‘OUT’ quantities using all models that did and did not include this example
in their training subset, respectively. Equation (2.25) relies on a generic performance
metric M , instantiated by Feldman and Zhang (2020) using a target probability for
image classification. Since NMT concerns the generation of sequences, we do not
rely on the target’s probability directly for M since that involves multiplying the
probabilities of individual target tokens. As a result, sequences of different lengths
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would be incomparable. Instead, we adopt a likelihood metric (LL) which aggregates
probabilities over tokens in the target sequence ym

1 of length m using the geometric
mean, for a given source sequence xn

1 and model θ:

LL(xn
1 ,ym

1 ,θ)=(
m

∏
t=1

P (yt∣y
t−1
1 ,xn

1 ,θ))

1
m

(3.1)

The geometric mean is preferred over the arithmetic mean of target token probabilities,
because it underscores probability’s multiplicative nature – i.e. one wrong word can
affect the entire translation’s correctness – and is preferred over the arithmetic mean of
log-probabilities because it is bounded. Alternatively, one could rely on a generation-
based metric for M ; in §3.3.2, we replace the likelihood measure with BLEU scores
for greedily decoded hypotheses and reproduce a subset of the findings with those
alternative maps.

CM is computed by taking the ‘IN’ performance and subtracting the ‘OUT’ perfor-
mance; in this chapter, we refer to these two components as training memorisation
(TM, which expresses how well a model performs if the example is in its training set)
and the generalisation score (GS, which expresses how well a model performs when
the example is unseen). CM is thus high for examples that can be predicted correctly
if they are in the training set, but that a model cannot generalise to if they are not.
Instead of approaching CM as a one-dimensional metric, we examine patterns that
underlie TM, GS and CM.

Data Even when leaving out data subsets, computing the memorisation metrics is still
resource-intensive. To balance the efficiency of the computation with the quality of the
NMT systems, we use corpora with 1M examples for five language pairs: English (En)
is the source language, and the target languages are German (De), Dutch (Nl), French
(Fr), Spanish (Es), and Italian (It).1 To enable direct comparison between languages,
we collect parallel data by taking sentence pairs from the intersection of the OPUS
corpora for these languages (Tiedemann and Thottingal, 2020). The use of multiple
language pairs helps to ensure that the conclusions are not language-specific. The raw
intersection of the language pairs mentioned above contained 4M sentence pairs, from
which we select sentences based on four criteria:

1. The length of the source divided by the length of the target is between 2
3 and 3

2 ;
2. The punctuation ratio of the source and target sequence lies below 0.5;
3. Less than 30% of the words in the source can appear verbatim in the target, as

well;
4. More than 90% of the digits contained in the target should also appear in the

source sequence.
1Throughout the thesis, we refer to languages using their ISO 639-1 codes.
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Figure 3.2: BLEU on the evaluation dataset Flores-200, when training to obtain the
memorisation scores.

The resulting data is relatively clean since the criteria above filter out potentially
misaligned examples. What happens when using a random OPUS subset with much
more noisy data? §3.3.2 elaborates on this. We tokenise our data using BPE tokenisation
(Sennrich et al., 2016).

Training models to obtain memorisation metrics We train 40 models to compute our
metrics repeatedly on a randomly sampled 50% of the training data, while testing on
the remaining 50%. The models are transformer-base models (Vaswani et al., 2017),
trained with fairseq for 100 epochs (Ott et al., 2019). To ensure that this leads to
reliable CM scores, we compute CM scores based on two disjoint sets of models and
examine how those scores compare, similar to Zhang et al. (2023). We compute CM
scores based on seeds 1 to 20, and then compute CM scores based on seeds 21 to 40:
these scores correlate with Pearson’s r=0.94. When combining 40 seeds, the metrics are
thus even more reliable.

We evaluate our models using the flores-200 ‘dev’ set (Costa-jussà et al., 2022),
a dataset created by expert translators for Wikimedia data. Figure 3.2 illustrates the
BLEU scores on a development set over the course of training. At the time of writing,
the top Flores-200 ‘dev’ performances on the OPUS-MT leaderboard were 40.4, 27.1,
51.5, 28.0 and 29.2 for De, Nl, Fr, Es and It, respectively. Of course, our models
trained on a fraction of SOTA MT datasets underperform, but our relative differences in
BLEU across languages are similar. In Appendix A we elaborate on the technical setup
used for model training, and the licenses of the datasets used throughout this chapter.

3.3 Data characterisation: what lies where on the memorisa-
tion map?

We now have values for our memorisation metrics for 5M source-target pairs across
five language pairs. We can view each source-target pair as a coordinate on a map
based on the TM and GS scores associated with that example; the offset of the diagonal
indicates the CM. Figure 3.3 illustrates the coordinate system for En-Es. It represents
datapoints using scattered dots, coloured according to CM. As is to be expected, the

https://opus.nlpl.eu/dashboard/
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En: COMAC C919 Gets Ready for Its First Flight
Nl: Chinese C919 bijna klaar voor eerste vlucht
(“Chinese C919 almost ready for first flight”, change of words
& capitalisation, paraphrase)

En: She just lost her father
De: Habe ein wenig Mitgefühl
(“Have a little compassion”, appears misaligned)

En: Saves the phrase book onto the hard disk
Fr: Enregistre le carnet de phrases sur le disque dur
(“Saves the phrasebook to the hard drive”, literal)

En: You know what would help?
It: Sai cosa sarebbe d’aiuto?
(“Do you know what could be helpful?”, nearly literal)

En: if you have been sick (vomiting or diarrhoea)
Es: i ha estado enfermo (con vomitos o diarrea)
(“if [you] have been sick (with vomiting or diarrhea)”, omits pronoun, typo si)

1
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4

Figure 3.3: The memorisation map for En-Es, with five examples from the five language
pairs and their approximate position on their respective memorisation maps.

TM values exceed the GS values, meaning that generating an input’s translation is
easiest when that example is in the training set. Examples with high CM are rare: few
examples are very easily memorised during training while also having a very low GS.
The figure provides five examples from the different language pairs, with an indication
of where those example are on the language pairs’ respective memorisation maps. The
first example in the bottom left appears misaligned; the second example with very high
CM demonstrates a case of changed formatting, paraphrasing and word replacement;
examples three and four are straightforward translations but with slight differences
between the source and target, and the fifth example is a very literal, word-for-word
translation. Our interactive demo can be used to further examine individual examples
on the map.

To better understand which characteristics influence a datapoint’s position on this
map, we next analyse the correlations between datapoints’ features and the three
metrics.

3.3.1 Analysis of feature groups

We compute 28 language-independent features that cover a broad spectrum of surface-
level features of both the source and target. 16 features describe the source and target
based on length and frequency (either before or after subword tokenisation), and 7
features capture the source-target overlap, using the source-target Levenshtein edit
distance (ED), the Levenshtein ED of the source and the target’s backtranslation
(computed with models from Tiedemann and Thottingal, 2020), ratios of unaligned
words, word/token verbatim overlap and the alignment monotonicity (as per the Fuzzy
Reordering Score, Talbot et al., 2011). The remaining features are target repetitions, the
BPE segmentation rate of the source or target, and digit and punctuation ratios of the
source. The full list of features and details on the implementation of these features are
included in Appendix A. For each feature, we compute Spearman’s rank correlation (ρ)

https://memorisation-mt-demo.github.io/memorisation-mt-demo/demo.html
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Figure 3.4: Correlations between memorisation metrics and features (Spearman’s ρ), sepa-
rated into length-, frequency-, and overlap-based features, and the remaining features.
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Figure 3.5: Illustration of how six of the features capturing frequency, length, segmentation
degree and target repetition relate to TM, GS and CM.

for TM, GS and CM, combining datapoints from all five language pairs. All correlations
are contained in Figure 3.4; we will now review the most noteworthy patterns.

Frequency The frequency features are moderate predictors for CM (e.g. for the
minimum target log-frequency feature, ρCM=−0.46, depicted in Figure 3.5b). Examples
with low-frequency tokens can be learnt during training, but models are much less likely
to assign a high probability to targets with low-frequency tokens during testing.

Length The length characteristics correlate more strongly with CM than with TM or
GS (e.g. for the tokenised source length, ρCM=0.30, also visualised in Figure 3.5c). This
means that longer sequences tend to have a larger difference in performance between
training and testing time, compared to shorter sequences.
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Figure 3.6: Illustration of how six features capturing source-target overlap relate to TM, GS
and CM.

Token segmentation Thirdly, the segmentation of words into tokens moderately
correlates with CM (ρCM=0.40/ρCM=0.37 for source/target segmentation, respectively),
as is shown in Figure 3.5e. The segmentation compares the number of white-space-based
tokens to BPE tokens: 1− ∣s∣

∣sBPE∣ . This is in line with the effect observed for frequency,
since the BPE tokenisation scheme learns tokens based on frequency.

Repetitions A feature that is a weak positive predictor for TM and GS is the repetition
of the target (ρTM=0.15, ρGS=0.22, ρCM=−0.15, see Figure 3.5f). This is expected,
considering that similar targets have similar sources and are thus more easily memorised.
Previous work already noted that repetition-related characteristics (repeated sentence
‘templates’) lead to high TM (Zhang et al., 2023).

Source-target overlap The remaining features that correlate weakly or moderately with
TM and GS are: the target’s backtranslation ED to the source (ρTM=−0.49, ρGS=−0.56,
see Figure 3.6a), the source-target ED (ρTM=−0.30, ρGS=−0.26, see Figure 3.6b), and
the fraction of unaligned tokens (ρTM=−0.32, ρGS=−0.32 for target tokens, ρTM=−0.28,
ρGS=−0.29 for source tokens, see Figure 3.6e). Apart from negative correlations, there
are weak positive predictors, e.g. token overlap (ρTM=0.15, ρGS=0.13, see Figure 3.6f).
These features express (a lack of) source-target overlap: source words are absent in the
target, or vice versa. Because they are predictive of both TM and GS, they are not that
strongly correlated with CM: they predict where along the diagonal an example lies
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but not its offset to the diagonal. While you might expect that examples with little
source-target overlap require memorisation, their TM values remain low throughout
the 100 epochs. The only relation to CM we observe is that, typically, examples in the
mid-range (i.e. with some overlap) have higher CM than examples with extreme values
(i.e. full or no overlap). CM thus highlights what models can memorise in a reasonable
amount of training time. This provides a lesson for NMT practitioners: models are
unlikely to memorise the noisiest examples, which might be one of the reasons why
semi-automatically scraped corpora, rife with noisy data, have driven the success behind
a range of NMT systems (e.g. Schwenk et al., 2021a,b).

3.3.2 Memorisation map variations

The memorisation maps we discussed are based on parallel OPUS and the target-
likelihood metric. How do the maps change if we vary the corpus or the metric?

Firstly, we change the corpus from the 1M OPUS datapoints filtered as laid out
in §3.2 to a random 1M examples, using the OPUS-100 subset for En-Nl of Zhang
et al. (2020). Figures 3.7a and b show the memorisation maps for our parallel En-Nl
OPUS and OPUS-100, respectively. The most striking differences are: OPUS-100 has
many more datapoints with a CM score close to 1 (dark red, in the bottom right), and
there are many more examples with a low GS. This is due to the more heterogeneous
nature of the random corpus that includes more source-target pairs with unexpected
tokens in the target (recall that we are computing a geometric mean over the target
tokens’ probabilities). For examples that the parallel OPUS corpus and OPUS-100 have
in common, Figure 3.7c shows how the TM, GS and CM scores differ. They strongly
positively correlate, but are still quite different in terms of absolute numbers. Hence,
when varying the corpus, the memorisation trends are similar, but the exact score
assigned to an example depends on the dataset composition. When we measure the
correlations between the features we assigned to datapoints and our three metrics, the
same patterns emerge: 95% of the correlations from Figure 3.4 have the same sign
when replacing the corpus, with correlations’ absolute values being slightly stronger
across the board for OPUS-100 (+0.04). The most notable differences are that length is
more strongly negatively correlated with GS, that length differences are now positively
correlated with CM, and that frequency is now negatively correlated with TM.

Secondly, we change the performance metric M in Equation (2.25) from the target-
based likelihood (LL) to a hypothesis-based metric by generating hypotheses using
greedy decoding and measuring BLEU scores. Figure 3.8a displays the new BLEU-based
memorisation map for En-Nl data (the map should be compared to Figure 3.7a). The
examples generally lie closer to the diagonal, and the computation of our metrics is
less stable across models: comparing CM scores from models with 20 seeds to those of
20 other seeds leads to Pearson’s r=0.84 (it was 0.94 for the LL-based scores). When
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Figure 3.7: Memorisation maps for En-Nl computed using parallel OPUS vs. OPUS-100,
and the differences in scores for examples the corpora have in common.

(a) BLEU-based map (b) High TM-BLEU (c) High TM-LL

Figure 3.8: The memorisation map for En-Nl when computed using BLEU instead of LL,
and illustrations of where highly memorised examples from one map reside in the other.

comparing the two sets of LL- and BLEU-based metrics, the TM and GS metrics
correlate very strongly with Spearman’s ρ of 0.89 and 0.80, respectively, although the
CM correlation is more moderate (ρ = 0.54). Examples that the model fully memorises
(BLEU>99 or LL>0.9) reside in the same area on the two maps, as shown by Figures 3.8b
and 3.8c. When we again examine the correlations between the datapoints’ surface-level
features and the three metrics, and compare those to the results from Figure 3.4, 93%
have the same sign, with the absolute values of correlations being lower across the board
for the BLEU-based metric (-0.07). The most noticeable qualitative differences are
that CM is less strongly correlated with length features, and that the backtranslation
source-target ED is no longer a weak positive predictor of CM.

In the remainder of the chapter, we will rely on the original memorisation map that
uses parallel OPUS, and the target-based LL metric.

3.3.3 Manual annotation

In the previous subsections, we discussed coarse patterns that relate datapoints’ features
to memorisation metrics. To understand whether similar patterns appear when we
qualitatively examine source-target pairs, we now annotate 250 En-Nl examples,
uniformly sampled from different parts of the coordinate system, with lengths l for
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Figure 3.9: Centroids and marginal distributions of examples grouped through the manual
annotation for En-Nl.

which 10 < l < 15. We annotate them using the following labels, where multiple labels
can apply to the same example:

• Word for word: if the target is almost a word-for-word translation of the source,
with very minor rephrasing or change in word order, for instance, Example (1)
below. After annotations were completed, we further subdivided these examples
into ‘word for word’ if no other labels were assigned, and ‘nearly word for
word’ if other labels were assigned.

• Paraphrase: if the target generally expresses the same meaning as the source
but uses different wording, e.g. see Example (5) below.

• Inaccurate: if the target is an incorrect translation or discusses something that
the source does not warrant, e.g. see Example (3) below.

• Addition: if the target introduces new information, e.g. see Example (8) below.
• Removal: if the target removes content from the source, e.g. see Example (6)

below. When including removals or additions in the results, we only count those
not labelled ‘almost word for word’, to focus on cases where the change affects
the meaning.

• Formatting changes: if the target changes the punctuation or the capitalisation,
such as in Example (9).

Figure 3.9 summarises the results. Firstly, these results consolidate the observation
regarding source-target overlap: word-for-word translations, e.g. Examples (1) and (2),
are positioned closer to the top right corner compared to inaccuracies, e.g. Examples (3)
and (4), and paraphrases, e.g. Example (5).

(1) s En: In only days, without food or water, Society collapses into chaos.
t Nl: In slechts enkele dagen, zonder eten of drinken, stort de maatschappij in

chaos. (TM=0.74, GS=0.47)

(2) s En: Leave a few empty rows and columns on either side of the values.
t Nl: Laat enkele rijen en kolommen leeg aan beide zijden van de waarden.
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(TM=0.85, GS=0.55)

(3) s En: The last 2 years of my life has been one big lie.
t Nl: "De afgelopen twee jaren van mijn leven zijn een grote leven geweest. (leven

!= lie, TM=0.28, GS=0.14)

(4) s En: We ask you to form a worldwide front against war and NATO.
t Nl: Wij vragen u om een wereldwijd front tegen de oorlog en sancties te vormen.

(NATO != sancties, TM=0.31, GS=0.19)

(5) s En: I don’t know how she did it, but she did it.
t Nl: Geen idee hoe, maar ze deed ’t. (underlined portions are paraphrases,

TM=0.23, GS=0.14)

Yet, paraphrases and inaccurate translations have similar centroids on the map; the
differences between those two types are subtle and are not well reflected in the mem-
orisation metrics. Lastly, what is not that easily captured by one automated feature,
but does show up in these results, is that targets that remove content from the source,
e.g. Examples (6) and (7), are easier to memorise during training than those that add
content, e.g. Example (8).

(6) s EN: Then we had our little adventure up in Alaska and things started to change.
t NL: Toen waren we in Alaska en begonnen dingen te veranderen. (TM=0.80,

GS=0.22)

(7) s EN: He married his beloved wife, Penny, in 1977 and raised a family.
t In 1977 trouwde hij met Penny en samen brachten ze een gezin groot. (TM=0.50,

GS=0.04) )

(8) s EN: There are periods and stages in the collective life of humanity.
t NL: Evenzo zijn er perioden en fasen in het collectieve leven van de mensheid.

(TM=0.45, GS=0.34)

(9) s It is difficult to negotiate with people who CONFUSE AUSTRIA WITH AUS-
TRALIA.

t Samenwerken met mensen die Oostenrijk verwarren met Australië is lastig.
(TM=0.72, GS=0.01)

3.3.4 Comparing metrics for five languages

The trends of what complicates or eases memorisation are consistent for all five languages,
upon which we elaborate in §3.5. Does this mean that one source sentence will have
a very similar TM, GS or CM score across the five language pairs in our corpus?
Not necessarily, as is shown in Figure 3.10, which, for the three metrics, reports the
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Figure 3.10: Comparison of the memorisation metrics across the five languages, using
Pearson’s r.

correlation between scores associated with the same source sequence (but different target
sequences) across the different languages. These correlations vary from moderate to
strong, suggesting that for the same source sequence, scores tend to be similar, but that
there are also a substantial number of examples for which memorisation scores differ.

A portion of the variation in memorisation scores over languages might be explained
by language similarity: the genetic similarity of languages – quantified using the Uriel
database (Littell et al., 2017) – positively correlates with the numbers reported in
Figure 3.10, with a Pearson’s r of 0.51, 0.68 and 0.78 for TM, GS and CM, respectively,
with p < 0.05 for GS and CM. This suggests that more similar languages also have more
similar changes in target translations.

Source sequences with different positions on the memorisation maps from two
language pairs provide insight into how the relation between the source and target
affects memorisation. Examples that move from the top right in one language to the
bottom left in another show how targets go from easily learnable to not learnable: in
Examples (10) and (11) the second target (t2) seems misaligned. In Example (12) t2

is contextually relevant, by discussing that something takes too long, but it is not a
translation of “It’s a long story”.

(10) s En: She’s not a child anymore.
t1 Es: Ya no es una niña.
t2 De: Du hast das Kind verwöhnt, Matthew. (You spoiled the child, Matthew)

(11) s En: It is an international obligation.
t1 Es: Es una obligación internacional.
t2 Fr: Nianias sur l’opportunité de cet embargo. (Nianias on the advisability of

this embargo)

(12) s En: It’s a long story.
t1 Nl: Het is een lang verhaal.
t2 It: Sarebbe troppo lungo spiegarsi. (It takes too long to explain)
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What about examples that move from the top right to the bottom right, i.e. go from
easily learnable to only learnable if they are in the training set? Generally, they seem
to deviate from source sequences in more subtle ways – e.g. they are missing a term or
phrase in t2, as is the case in Example (13), where “Kenneth” is missing, Example (14)
where “hunting game” translates into “game” and Example (15), where “viable suspect”
is simply translated as “suspect”.

(13) s En: Kenneth, what are you doing here?
t1 Es: Kenneth, ¿qué haces aquí?
t2 Fr: Que fais-tu ici (What are you doing here?)

(14) s En: Is this a hunting game?
t1 Fr: C’est un jeu de chasse?
t2 Nl: Is dit een spelletje? (Is this a game?)

(15) s En: We need a viable suspect.
t1 Es: Necesitamos un sospechoso viable.
t2 De: Wir brauchen einen Verdächtigen. (We need a suspect)

3.4 Intermezzo: what about formulaic phrases?

Up to this point, we have examined datapoints and their features across all examples in
the training dataset. Given the emphasis of Part II of this thesis on compositionality
and non-compositional formulaic expressions, we now shift focus from considering all
datapoints to a specific subset, analysed through the lens of non-compositionality. How
do examples containing formulaic phrases score on our memorisation maps? Formulaic
expressions, such as idioms, often convey figurative meanings that do not directly follow
from their individual words and may be specific to a language or culture. As such, they
require special treatment in translation, particularly when a literal rendering would be
nonsensical in the target language (Baker et al., 1992; Bortfeld, 2003). To examine the
memorisation scores of sequences containing formulaic expressions, we now outline the
process used to select relevant stimuli, analyse how these examples differ for the three
metrics under consideration, and conclude with a brief discussion.

3.4.1 Selecting formulaic and control stimuli

Firstly, we select examples that contain compositional and non-compositional
noun compounds from a resource constructed by Tayyar Madabushi et al. (2021).
Tayyar Madabushi et al. requested 12 annotators to collect example sentences of the
compounds from web text, and curated an overview of 223 English compounds and their
non-literal meanings based on these examples. We separate the compounds that have
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no literal meaning from those that have at least one non-literal meaning; for instance,
“mailing list” is only used literally, whereas “elbow room” is both used literally (as a joint
room) and figuratively, to represent space and freedom. Our parallel corpus has 1002 and
4154 matches for the non-compositional compounds and the compositional compounds,
respectively. We automatically label instances for non-compositional compounds as
figurative or literal using GPT-4o (Achiam et al., 2023),2 using a straightforward prompt:
“Consider the sentence <sentence>. Is the compound <compound> used figuratively or
literally here? Answer using one word.” Cognisant of the fact that this labelling might
be inaccurate, we include both results for the subset of figurative non-compositional
compounds and the full set of non-compositional compounds. 28% of the examples are
labelled as figurative.

Secondly, we collect idioms from the Oxford Dictionary of English, specifically
those that were included in the MAGPIE corpus of Haagsma et al. (2020). Over 600
are an exact match with source sequences from our parallel corpus, appearing in a total
of 7078 examples. Similar to the non-compositional compounds, we automatically label
the examples as figurative or literal using GPT-4o, using an analogous prompt but with
‘compound’ replaced with ‘idiom’; 68% of the occurrences are labelled as figurative.

Lacking a standard resource for English proverbs, we, lastly, collect proverbial
phrases from English Wikipedia,3 postprocessing them to remove authors and potential
variations, removing some prefixes such as “do not”, “you cannot” and “there is/are” to
improve recall. We remove multi-sentence instances, and remove “It is on” because it
led to too many false positives for our parallel corpus. For 110 proverbs, we find 293
exact matches in the source sequences of our parallel corpus.

As these formulaic phrases are typically short and embedded in source sequences,
we do not necessarily expect them to stand out in absolute terms – one idiom appearing
in a longer sentence does not require memorisation for the full sequence but rather
memorisation for a phrase contained within that sequence. We thus contrast the
memorisation scores of these sequences to memorisation scores of control stimuli
selected based on the source and target length of the white-space tokenised source and
target sequences.

3.4.2 Results: formulaic sequences are memorised less

For our TM, GS and CM metrics, Figure 3.11 illustrates the difference between formulaic
and control stimuli, aggregating over data from all five language pairs, including idioms
and non-compositional compounds tagged as figurative by GPT-4o separately. Across

2Specifically, gpt-4o-2024-08-06, accessed on the 20th of February, 2025. Note that this experiment
was added following the publication of this chapter, and that GPT-4o was not yet available at the time
of publication.

3https://en.wikipedia.org/wiki/List_of_proverbial_phrases, retrieved on the 20th of February,
2025.

https://en.wikipedia.org/wiki/List_of_proverbial_phrases
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Figure 3.11: Differences in memorisation scores when comparing formulaic stimuli to control
stimuli of the same source and target length. Error bars show the standard error.

the board, all formulaic sequences score lower in terms of both TM and GS, and out of
all stimuli, the compositional compounds show the smallest difference to their control
stimuli. If we compare the scores for our stimuli to their controls using an independent
two-sided t-test (with a Bonferroni correction for comparing four types of stimuli to
their controls over three metrics and five languages), that difference is nearly always
significant for the formulaic stimuli for TM and GS (except for 4 out of 30 comparisons),
but for none of the tests for compositional compounds. While selecting control stimuli
based on sequence length is a crude approximation of a true control stimulus – ideally,
one might correct for other factors, such as token frequency – the smaller difference for
the compositional compounds consolidates that the control stimuli provide a meaningful
point of comparison. Figurative idioms and figurative non-compositional compounds
show a larger difference to the controls compared to just idioms and non-compositional
compounds in general. Still, we interpret these results with caution since it is unknown
how accurate the labelling is without manually evaluating GPT-4o on this task. The
only stimuli that stand out for CM are the (figurative) non-compositional compounds,
which, for all languages, have significantly different CM scores compared to control
stimuli.4

On the effect of paraphrasing non-compositional phrases Why would sequences
containing proverbs, idioms, and non-compositional compounds have lower TM and
GS scores (or higher CM scores, in case of the non-compositional compounds)? One
potential explanation is that due to the non-compositionality of these phrases, target
translations contain more paraphrased material than the control stimuli; or, in terms of
the numerical features we introduced in §3.3, there is less source-target overlap. We
measure the median percentual change of surface-level features for formulaic stimuli

4Taking into account the hypothesis that non-compositional stimuli may have more accurate para-
phrased translations than compositional examples (see §2.3.3), one might worry that the LL differences
compared to controls stem from underestimating the TM and GS scores of formulaic stimuli. LL is
based on target tokens’ log-probability, but models may spread probability mass across several valid
paraphrases. In section A.3, using En-Nl data, we confirm that formulaic stimuli also show lower TM
and GS compared to controls when we rely on a neural quality estimator, which is expected to be more
semantics-aware. In that scenario, they do show slightly higher CM than controls.
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Figure 3.12: Visualisation of formulaic phrases based on the mean TM and GS scores for
examples in which they appear. Dots are scaled based on the phrase’s frequency, and the
colour indicates whether the phrase of interest is usually translated word for word or is
paraphrased.

compared to control stimuli across data from the five language pairs. The top three
features showing the largest differences per phrase type are as follows:

• For proverbs: unaligned tokens (for both the source and target), and the back-
translation Levenshtein ED;

• For idioms: unaligned tokens (source), word overlap and the backtranslation
Levenshtein ED;

• For non-compositional compounds: unaligned tokens (source), the segmentation
ratio of the target and the source-target length difference after tokenisation.

Most of these features, indeed, express that decreased source-target overlap we would
expect when seeing more paraphrases in the target. The segmentation ratio and length
difference could explain why non-compositional compounds are the only examples with
increased CM: they appear in sequences with tokens that are more often rare and
thus get tokenised into more tokens, which we previously identified as being positively
correlated with CM (§3.3).

We can further consolidate the role paraphrasing plays by taking a closer look at our
data: for En-Nl, I manually labelled translations for the proverbs, 200 of the idioms,
and all non-compositional compounds. The translations were labelled as ‘word for word’
or ‘paraphrase’, based on how the majority of up to 5 figurative examples of that phrase
in our corpus are translated.5 Even though proverbs, idioms and non-compositional
compounds are generally non-compositional phrases, word-for-word translations can
still occur, for instance, if the equivalent phrase exists in the target language (e.g.
“biological clock” exists both in English and in Dutch, whereas “sitting duck” requires a

5Excluding examples for which less than 66% has a consistent label, examples that primarily appear
to be false positives in context, such as the idiom “on the level”, or examples that copy the English
phrase in the Dutch target, such as “brain drain”.
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paraphrase in Dutch). We previously identified that formulaic stimuli have lower TM
and GS scores than control stimuli; Figure 3.12 now demonstrates that even within
the formulaic stimuli, the subgroup that has the lowest TM and GS scores are those
labelled as paraphrases.6 This effect is by far the strongest for the proverbs, which is
likely because they tend to be longer phrases than idioms or noun compounds, thus
having a more significant effect on the overall memorisation scores of the source-target
pairs in which they appear.

It should be noted that, particularly for proverbs, not all word-for-word target
translations are correct translations, e.g. in case of (1) “tomorrow is another day”
translated as “het morgen is een andere dag”, (2) “too little too late” translated as
“veel te weinig te laat” and (3) “to the victor go the spoils” translated as “de winnaar
krijgt de verwenningen”. Not only are they semantically very odd, but also (for 1
and 2) grammatically incorrect. This could result from the fact that OPUS not only
contains human translations but also auto-aligned pairs from the web, which is how
machine-translated text could have ended up in the training corpus we use.

3.4.3 Discussion

Translating proverbs, idioms, and non-compositional compounds accurately requires
memorisation: no human automatically knows that “What goes around comes around”
should map to “Wie de bal kaatst kan hem terug verwachten” (“Who passes the ball
can expect it back”) when translated into Dutch. This is information that simply must
be committed to memory, for both humans and computational models alike. One
would thus hope to have higher memorisation scores for these types of phrases, but,
in practice, formulaic stimuli score lower in terms of both TM and GS compared to
control stimuli. The experiments conducted here are exploratory and preliminary – to
consolidate these findings, the experiments would need to be repeated with multiple
external annotators. Nonetheless, given the consistency across the different formulaic
stimuli and the comparison to compositional compounds, we can safely state that
formulaic stimuli are memorised less and that paraphrasing plays a role in this. This
is unsurprising, given that phrases with reduced source-target overlap scored lower in
terms of TM and GS across the board, but it does highlight a paradox that we will
later return to in chapters 5 and 6: what NMT models actually memorise does not
necessarily equal what we think they should memorise.

3.5 Approximating memorisation measures

Following our intermezzo about formulaic phrases, we now return to focusing on all
of our datapoints. Having examined correlations between datapoints’ features and

6Inspect the results per formulaic phrase interactively using our demo.

https://memorisation-mt-demo.github.io/memorisation-mt-demo/demo.html


Chapter 3. A memorisation–generalisation continuum of data 72

memorisation values, we now go one step further and treat this as a regression problem:
given the characteristics of a datapoint, can we predict the TM, GS and CM metrics?
We include the previously mentioned features and additional ones obtained from an
NMT system during training. We examine the performance of our regression models and
explore how well they generalise across language pairs. The analysis aids in consolidating
findings from §3.3 and improves our understanding of how language-independent our
findings are. Since computing CM is resource-intensive, the predictors can also serve as
memorisation approximators (we circle back to this in §3.6.2).

Experimental setup To extract training signals, we train one transformer-base model
per language pair on the full dataset for 50 epochs, acting as our diagnostic run from
which we extract the following signals:

• Confidence and variability: the mean and standard deviation of the target
likelihood computed over all epochs (we follow Swayamdipta et al., 2020, in the
choice of metric, but with probability replaced with likelihood);

• Final train likelihood: the likelihood of the target in the final training epoch;
• Forgetting: the sum of all decreases in target likelihood observed for consecutive

epochs (adapted metric from Toneva et al., 2019);
• Hypotheses’ likelihood obtained in the final epoch. Uncertainty can aid in

detecting out-of-domain data (D’souza et al., 2021), and hallucinations (Guerreiro
et al., 2023);

• We also included final train likelihood - confidence since initial experiments
suggested those two correlated most strongly with TM and GS, and CM is known
to be a combination of those two signals.

Apart from the hypotheses’ likelihood, these signals are ones you would naturally
obtain while training a model. We train shallow MLPs (with two hidden layers of 100
dimensions, trained as detailed in Appendix A) to predict the TM, GS and CM metrics.
We train one MLP on the datapoints’ features from §3.3, and one on the features and
the training signals, and report their performance using Pearson’s correlation and the
absolute difference between predictions and memorisation scores. We train the MLP
using the En-De memorisation map and apply it to data from the other language pairs.

Results If we first look at the MLP trained on the surface-level features only, the predic-
tions already strongly positively correlate with the memorisation metrics, with Pearson’s
r around 0.7 and a mean absolute difference around 0.1, see Figure 3.13a. Combining
the features and training signals further boosts performance (see Figure 3.13b).

Since we applied the En-De MLPs to the other languages, these figures illustrate
that an MLP trained on one language is transferable to models trained with other target
languages. However, an important caveat to mention is the fact that the language pairs
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Figure 3.13: Predicting memorisation using an MLP, based on examples’ features and
models’ training signals. The MLP is trained on En-De and applied to all languages.

we examined here are all Indo-European and are, therefore, quite strongly related. The
transferability of the MLP predictors might thus be limited to related languages. We
further comment on the set of languages used in the limitations section, see §3.7.1. Note
that this also does not mean that models for the different language pairs behave similarly
for the same source sentences, but instead that models trained on different language
pairs behave similarly for source-target pairs with the same features. In practice, this
means that we can make an educated guess about the amount of memorisation required
for a new datapoint using predictors trained on a subset of the data, or using predictors
trained on data from a related language pair.

3.6 Memorisation and performance

Finally, we examine the relation that different regions of the memorisation map have
to models’ performance. In §3.6.1, we focus on the influence of data subsets from our
original 1M training corpus, and in §3.6.2, we turn to sampling specialised training
corpora from a larger dataset of 30M examples. The previous sections showed that
results across language pairs are highly comparable. Given the computational expense
of our experiments, we will now focus on En-Nl data only.

3.6.1 Importance of different regions

How do examples from specific regions of the memorisation map influence NMT models
trained on that data? We now investigate this by creating subsets of examples based on
their coordinate on the memorisation map, and either withholding them from training,
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Figure 3.14: The ten most and the ten least relevant regions on the memorisation map per
performance metric, based on training models while withholding data from these regions.
The most relevant regions show the largest change in performance when withheld.
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Figure 3.15: The ten most and the ten least relevant regions on the memorisation map per
performance metric, based on training models only on data from these regions. The most
relevant regions have the best performance.

or training exclusively on those subsets.

Experimental setup For 55 coordinates (i,j), where i,j ∈ {.1, .2, . . . ,1}, j ≤ i, we create
data subsets including the nearest examples for that coordinate, up to 750k source
tokens. Depending on the number of examples surrounding a coordinate, the datapoints
can lie closer or further away before reaching the limit. For each subset, we train models
with three seeds in two setups: one in which the training set has that subset withheld,
and one in which the training set consists exclusively of that subset.

We evaluate models according to four performance metrics: (i) BLEU scores for
the Flores-200 development set (Goyal et al., 2022). (ii) the mean log-probability
of a target, averaged over datapoints from the Flores-200 data. (iii) a hallucination
tendency computed using the approach of Lee et al. (2018), which involves the insertion
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Figure 3.16: Performance change along the CM dimension, when withholding subsets with
a certain CM score (light blue dashed lines, left-aligned y-axes) or training on subsets with
that CM score (dark blue solid lines, right-aligned y-axes). Error bars indicate standard
deviations over regions with the same CM score.

of a token into a source sentence and repeating that for more than 300 tokens (high-
frequency, mid-frequency and low-frequency tokens and punctuation marks), and four
token positions. A hallucination is recorded if BLEU drops below 1 after an insertion.
We apply this to 1000 examples (500 from Flores, 500 from our parallel OPUS) and,
following Lee et al., measure the ratio of source sequences which can be perturbed to at
least one hallucination. (iv) COMET-22, an ensemble-based neural evaluation metric
(Rei et al., 2022), also computed over the Flores-200 data.

Results To express an example’s impact in the withholding setup, we average the
performance of all models for which that example was not in the training set. The
more negatively the performance is affected, the more important an example is. We
aggregate over regions of examples and exclude regions that represent <2k datapoints.
For the exclusive setup, we do the opposite, aggregating performance for a region using
all models that did have examples in that region in the training set. We then compute
the ten most relevant regions and the ten least relevant ones. For the withholding
setup, most relevant means that the BLEU score, log-probability or COMET score
decreases the most or that the hallucination tendency increases the most if you withhold
datapoints from this region. For the exclusive setup, most relevant simply means that
that region scored the highest (for BLEU, log-probability and COMET) or lowest (for
the hallucination tendency).

Figures 3.14 and 3.15 visualise the most and least relevant regions, for the withholding
and exclusive setups, respectively. Figure 3.16 directly visualises the relation between the
CM scores and the performance metrics. In general, the figures suggest that examples
with a higher CM value are more beneficial, and examples closest to the diagonal are
the least relevant. This is in accordance with related work from CV (Feldman and
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Figure 3.17: Change in word probability (y-axis) when remov-
ing coordinates based on CM and GS, per word probability
bucket (x-axis). Error bars indicate standard error.
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Zhang, 2020) and NLP classification tasks (Zheng and Jiang, 2022), where examples
with high CM values had a larger (positive) contribution to the accuracy for test data
than random examples. There are, however, substantial differences between the different
performance metrics regarding the usefulness of the lower CM regions, and the standard
deviations in Figure 3.16 are quite high, particularly for the BLEU and COMET scores
in the exclusive setup. This is due to the fact that a CM value of, for instance, 0.1,
represents regions with widely varying TM and GS scores, that have very different types
of datapoints associated with them (as we established in §3.3). Examples in the bottom
left of the memorisation map are the least beneficial when maximising BLEU scores, but
examples from the top right are the least beneficial when maximising the log-probability
of evaluation data, even though both the bottom left and top right would have a CM
score close to zero. This result underscores that memorisation should not be treated
as a one-dimensional phenomenon. The results for COMET are somewhat in between
those of BLEU and log-probability, but they nonetheless reflect the overall pattern of
high-CM examples being more relevant than low-CM examples.

Going further: why high CM might be beneficial Why might examples with high
CM be more beneficial for generalisation performance? As laid out in §2.2.2, Feldman
and Zhang (2020) observe that training examples with high CM usually are atypical
‘long-tail’ examples and that they improve performance on visually similar test examples.
Analogous processes might be at play for translation. Yet, there may be benefits to
examples with high CM values even without similar test examples.

Firstly, we examine the log-probability performance impact of the withholding setup
more closely. Why are the bottom rows, and the examples with high CM in particular,
most relevant? This metric is computed using the target tokens’ probabilities, which
are easily negatively affected if there are some unexpected target tokens. Coordinates
in the bottom rows might be relevant because they include somewhat ‘noisy’ data,
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which increases uncertainty in the model during training and thus smooths the output
probability distribution. To examine whether our data reflects that, we put tokens from
the Flores sequences in buckets based on the mean token probability that they have
in the predictions of all models trained in §3.6.1. We compare these token probabilities
to those from models that leave out examples with a certain CM or a certain GS in
Figure 3.17. If examples with high CM are removed during model training (e.g. examples
from the 0.7-0.8 CM band), the token probabilities for buckets with a relatively low
probability show the largest decrease. Vice versa, when removing examples with low
CM, the token probabilities for buckets with the lowest probability increase the most.
A similar effect is observed for GS, where removing low GS examples decreases the
probabilities of low-probability buckets the most. This suggests that removing examples
with high CM (and low GS) makes the output distribution less smooth.

Secondly, we would like to point out that examples with a high CM score generally
have less redundancy than examples with a low CM score (in particular, compared to
examples with a high TM and GS). Our training corpus has 1M unique source sentences.
Although none of them are repeated, some sentences are more alike than others in terms
of n-gram count, explaining that redundancy. To illustrate that, Figure 3.18 conveys
the ratio of unique trigrams in the data from a particular coordinate.

Summarising, these preliminary investigations provide two reasons for why high CM
examples could be beneficial: there is less redundancy among them (evidenced by more
unique n-grams) which could make them more informative training data, and removing
examples with a high CM score negatively affects models’ predictions for low-probability
tokens, in particular; therefore, including them as training material may quite literally
reserve probability mass for the long tail of the output distribution.

3.6.2 Specialising NMT systems using memorisation metrics

We have now examined the relation between models’ performance and the different
regions of the memorisation map, but all within our original 1M En-Nl datapoints.
To understand whether our findings extrapolate to a larger dataset, we perform a
proof-of-concept study to show that we can put the lessons learnt to use with new data:
memorisation metrics can be predicted using datapoints’ features and distinct regions
of the map have different roles. We now use these lessons for targeted model training.

Experimental setup We again train NMT systems in a low-resource setup, yet, different
from the previous sections, we now select examples from a larger set of OPUS examples
for En-Nl (30M examples) based on their memorisation score as predicted using the
features-only MLP from §3.5. We first sample 1M random examples, and then sample
one dataset with high CM examples. Because for log-probability both the withholding
and exclusive setup suggested it is not just high CM, but also low GS examples that are
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Figure 3.20: Results of comparing specialised models (in colour) to models trained on
randomly selected OPUS data (in gray, with hatches). Error bars show the standard error.

beneficial, we sample a separate 1M dataset for log-probability. We mark the regions
on the memorisation map in Figure 3.19. Examples are randomly sampled from those
areas until they match the random dataset in the number of tokens. For those three
datasets, we train three model seeds.

Results We compare the specialised models to a model trained on 1M random examples
(Figure 3.20) and observe that the specialised models perform on par or show a slight
improvement, with the largest relative improvement observed for the hallucination
tendency.

At the same time, Raunak et al. (2021) reported that when trying to elicit halluci-
nations from the model using its training examples, examples with high CM scores lead
to more hallucinations. To determine whether our results also reflect that, Figure 3.21
displays the mean CM scores associated with each hallucination from the current and
previous subsection. For the models from the withholding setup of §3.6.1 (trained on
these examples), but not §3.6.2 (not trained on these examples), hallucinations are
indeed more associated with examples with higher CM scores. Together, these results
indicate that at the instance level, examples with higher CM scores are more likely to
turn into hallucinations themselves when artificially perturbed, but that they are useful
training material at the system level, nonetheless. Potentially, high CM examples are
better training material because they show some natural variation, making the model
more robust to those artificial perturbations.

All in all, this small-scale experiment provides a proof-of-concept: even when using
heuristics (i.e. applying the MLP to new datapoints) we can start to use memorisation
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Figure 3.21: Using all hallucinations from §3.6.1 (withholding setup) and §3.6.2, we trace
the mean CM score of the unperturbed sequence. Error bars report standard deviation.

metrics in a deliberate way when training NMT systems. However, the hallucination
results underscore that the relation between examples with high CM scores and model
performance is not straightforward: examples that are most beneficial for systems’ quality
can introduce vulnerabilities at the same time. The performance changes observed,
however, are very minor, likely due to the application of an imperfect MLP predictor,
and future work would further have to invest in efficient and effective predictive models
of memorisation scores when integrating them as data selectors during training.

3.7 Conclusion and discussion

Learning the input-output mapping that is represented by NMT training data involves
so much more than simply learning a function that translates words from one language
into another and rearranges words. It requires understanding which words form a phrase
and should be translated together, which words from the source should be ignored,
which words can be copied from source to target, and in which contexts “eggs in a
basket” are no typical eggs and require a paraphrase in the target language. NMT
systems need memorisation of patterns that are out of the ordinary.

There are, however, many open questions regarding what memorisation is, when it is
desirable and how to measure it. In this chapter, we took a step towards answering those
by creating a map of the memorisation landscape for 5M datapoints. We used graded
metrics based on CM to position each example on the memorisation map. We identified
salient features for each of the metrics to characterise what memorised examples are
like (§3.3), demonstrated that sequences containing formulaic sequences score lower in
terms of TM (§3.4), illustrated that we can approximate memorisation metrics using
surface-level features (§3.5) and drew connections between models’ performance and
regions of the memorisation map (§3.6). We identified that findings from other tasks
and domains about CM, as laid out in §2.2.2, transfer to NMT: CM highlights examples
that contribute most to models’ performance.

Furthermore, our results illustrate that memorisation is not one-dimensional: CM
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assigns similar scores to paraphrases and slightly inaccurate translations, examples with
high CM scores can be beneficial and introduce vulnerabilities at the same time, and
there are nuances about which region of the map is most beneficial depending on the
performance metric used. We recommend caution when discussing different phenomena
under the umbrella term of ‘memorisation’. Authors should be very specific about the
type of memorisation their results apply to, and ideally explore the many dimensions of
memorisation, for instance, by developing memorisation maps across tasks to understand
how the memorisation–generalisation continuum changes accordingly.

3.7.1 Limitations

We identify three main limitations of our work. Firstly, the experimental setup used is
rather computationally expensive due to the repeated model training as explained
in §3.2. Because of this, we opted for a much, much smaller dataset than state-of-the-art
NMT systems would use (OPUS can contain hundreds of millions of examples for a
high-resource language pair), but it still limits the applicability of the methodology to
other tasks and for other researchers.

Secondly, we did not investigate the impact of major changes to the experimental
setup, such as using a different model or model size or using a different or a larger dataset.
Even though our findings are expected to extend beyond our specific experimental setup,
the precise memorisation scores we obtained are specific to our setup – e.g. a larger
system is likely to memorise more, and systems trained for much much longer are
likely to see increased memorisation. We did, however, investigate two variations of our
experimental setup in §3.3.2 by varying the metric underlying our memorisation map
and varying the training data selection criteria.

The final limitation concerns the language pairs used. We relied on parallel data in
order to rule out that differences between language pairs were due to dataset differences,
but this prevented us from including low-resource languages, for which parallel data
is unavailable at a large scale. In preliminary experiments, we also experimented with
Afrikaans (together with German and Dutch), and many of the qualitative patterns
observed were similar. The fact that the languages are from the same language family
and geographical region also limits the generality of our results. The five language
pairs had a very similar relation between surface-level features and memorisation scores.
Yet, this would likely have been different for target languages from other families. For
instance, our overlap features are only meaningful in the case of a shared script and a
partially shared vocabulary, and the length-based features are likely to have a different
relation to memorisation when comparing analytic vs agglutinative languages.
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3.7.2 Retrospective and outlook

NLP is an exceptionally fast-paced field, and in the time that passed between the start
of the work that led to the publication discussed in this chapter in the summer of
2022 (followed by publication in the autumn of 2023), and the time of writing this
retrospective in 2025, the task of NMT has changed massively. NMT was initially
not affected by the trend of fine-tuning or prompting LLMs becoming the de facto
standard for other NLP tasks, but this changed around the time the paper was published.
This becomes evident even by simply considering the findings reported yearly by the
conference on machine translation (WMT). Whereas LLMs were not even mentioned by
Kocmi et al. (2022), in 2023, the organisers succinctly summarised LLMs’ contributions
as “LLMs are here but not quite there yet” (Kocmi et al., 2023), followed by “the
LLM era is here but MT is not solved yet” (Kocmi et al., 2024). Looking back, a
fourth limitation of the work conducted is thus that it trains models from scratch,
and cannot provide reliable estimations of how memorisation would differ during LLM
fine-tuning on NMT data, or whether our findings hold for source-target pairs an LLM
may have memorised in its pretraining stages.

Nonetheless, we consider our work to be a valuable contribution to the field. It was
only the fourth article to consider CM in the context of NLP (following Zheng and Jiang,
2022; Zhang et al., 2023; Raunak et al., 2021), and the second to examine CM on the
scale of millions of textual examples (following Zhang et al., 2023). Of related work that
appeared following our publication, work by Prashanth et al. (2024) is most strongly
related, who examine verbatim memorised examples of Pythia models (Biderman et al.,
2023). They propose a taxonomy and report corpus-wide and datum-level features
that relate to memorisation, distinguishing between recitation (quotes committed to
memory through duplication), reconstruction (passages that can be partially produced
by filling in gaps in a more widely used template), and recollection (reproduction of
sequences where that reproduction is not explained by duplication or data templates).
The recollected sequences are the most similar to the high CM examples we discussed,
and Prashanth et al. identify that, similar to our results, the presence of rare tokens is
strongly associated with this category.

Other recent related work by Lesci et al. (2024) proposes CM estimators, not at
the instance level, but at the level of batches of data to provide so-called memorisation
profiles per LLM. For Pythia models, they demonstrate that memorisation is stronger
and more persistent in larger models, that the data presentation order and learning rate
influence what is memorised and what is forgotten, and that memorisation in larger
models can be predicted from the profiles of smaller models.

We aimed to provide a nuanced discussion of memorisation, emphasising that
it can be beneficial to model performance while introducing vulnerabilities (such as
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hallucinations for training examples) at the same time and that models do not always
memorise what we would want them to memorise (as is the case for sequences containing
formulaic phrases). In Dankers and Raunak (2025), my co-author and I further dive
into memorisation vulnerabilities in NMT.7 We show that when training NMT models
using knowledge distillation to create compressed models with competitive performance,
this not only leads to better smaller models, but also to models that demonstrate more
memorisation than models of the same size trained from scratch. We focus on verbatim
memorisation and extractive memorisation – where models memorise to output the
target after seeing only a prefix of the source – and also identify increased hallucinations
as a consequence of knowledge distillation.

Going forward, we hope that our work can serve as a point of comparison when
evaluating qualitative patterns of what underlies memorisation in other tasks and
experimental setups (akin to the work of Prashanth et al., 2024), and that our per-
datum memorisation metrics can be a beneficial resource. CM and GS are simply
impossible to compute when working with datasets containing thousands or millions of
datapoints due to the leave-one-out principle on which the definitions rely. Given the
number of models used in our approximation and the statistics we provided suggesting
that our approximations are reliable, future work developing proxy metrics for GS and
CM (akin to the work of Lesci et al., 2024) could thus use our data as a resource for
benchmarking those metrics before applying them to new datasets or models.

7I was the first author of this article, but it is not a part of this thesis.



Chapter 4

Layer-based memorisation
localisation

4.1 Introduction

Whereas the previous chapter highlighted that, to some extent, all datapoints are memo-
rised and that data should be viewed along a memorisation–generalisation continuum, we
now shift focus. Instead of taking this broad perspective, we examine specific examples
that are known to require substantial memorisation from our models to investigate
memorisation localisation – i.e. identifying which weights, subcomponents, or layers are
most strongly associated with storing particular information. Specifically, we explore
where memorised information is stored within the many layers of a transformer.

Whether we can localise memorised information and edit models’ memories has been
widely studied, but there is little consensus in the literature on which layers play a key
role in memorisation within deep neural models. Related work on image classification
from CV mostly focused on memorisation of perfectly memorised mislabelled examples,
positing that lower layers capture generalisable features while deeper layers memorise
(Morcos et al., 2018; Cohen et al., 2018; Ansuini et al., 2019; Baldock et al., 2021;
Stephenson et al., 2021, i.a.).1 We dub this the generalisation-first, memorisation-
second hypothesis. Related NLP studies primarily discuss memorisation of facts:
methods that examine so-called ‘knowledge neurons’ mostly point towards the top
layers of transformer-based LMs (Dai et al., 2022; Zhao et al., 2024a; Chen et al., 2024),
whereas methods applying causal tracing and model editing primarily point to early
and middle layers (De Cao et al., 2021; Meng et al., 2022, 2023). Methods that project
hidden representations into the vocabulary space or zero-out internal updates to the
hidden representations suggest the lowest layers are most important for fact and idiom
recall (Haviv et al., 2023; Geva et al., 2023). A final strand of related work in NLP

1Although this has been challenged by Maini et al. (2023).
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Figure 4.1: If we train transformer to memorise incorrect label ŷ, the implementation of
that memorisation is task-dependent. We demonstrate this for twelve NLP classification
tasks. The visualisation is for illustrative purposes.

studies localisation for verbatim memorisation. Stoehr et al. (2024) and Chang et al.
(2024) suggest that storing sequences verbatim happens in a distributed manner over
many layers, in which lower layers play a more critical role than higher layers.

We extensively reviewed these lines of related work in §2.2.3. Summarising, memori-
sation localisation studies have drawn a wide range of conclusions. It remains unclear
whether the differing conclusions can be attributed to a distinction between the vision
and language modalities, to a difference between the types of memorisation investigated,
to localisation techniques employed, to the different metrics used to evaluate the locali-
sation or even to the various models under investigation. In this chapter, we contribute
a crucial piece of the puzzle in the memorisation localisation landscape, by, akin to work
from CV, studying memorisation of mislabelled examples (‘noise memorisation’), using
models for NLP classification tasks by learning a classification head and fine-tuning
the many layers of the models. This allows us to determine whether the ‘deeper layers’
answer from CV truly contrasts with the ‘lower layers’ answer from the majority of
NLP studies, or whether that was simply unique to noise memorisation. Additionally, it
allows us to explore whether the ‘lower layers’ answer is specific to fact memorisation
and verbatim memorisation.

The experiments in this chapter contribute to the thesis’s overarching research
question RQ2: “Which model-internal mechanisms enable memorisation?” In studying
layer-based localisation, we answer the following two sub-questions:

1. Can memorisation of mislabelled examples be localised to individual layers? We
use four memorisation localisation methods (§4.2), and first examine their accuracy
in a control setup. Afterwards (§4.3), we address this question, identifying that
memorisation is not implemented in individual layers but that multiple layers
gradually shift mislabelled examples to their newly assigned class. In §4.4, we
introduce the visualisation technique of centroid analysis to make this story
more interpretable, visualising how the hidden representations change from layer
to layer, and how that aligns with the layer-based results obtained.

2. To what extent is layer-based localisation consistent across LMs and classification
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tasks? We apply our localisation methods to twelve NLP classification tasks and
four LMs. The four models mostly yield consistent results. We identify subtle
differences between tasks that we relate to models’ generalisation performance on
unseen data. The better a model generalises to new data for a particular task,
the more relevant deeper layers are for memorisation. Figure 4.1 illustrates this.
In §4.5, we consider changing the model size or modifying the datasets to further
study how this influences the results.

Overall, our findings do not align with the generalisation-first, memorisation-second
hypothesis, but support a more nuanced version of the hypothesis. We elaborate on
this in our discussion (§4.6), in which we also reflect on what our findings mean for
localisation and model editing going forward, what the limitations of our work are and
how our work aligns with literature that appeared after the publication of the chapter.

4.2 Methods and experimental setup

To gain a good understanding of how memorisation is task- and model-dependent, and
to what extent our results are specific to a localisation method, we use twelve datasets,
four LMs and four localisation methods. Here, we detail the tasks, datasets and models
used, and elaborate on the localisation techniques and their accuracy when evaluated in
a control setup, before moving on to the full localisation results in the next section.

4.2.1 Tasks and datasets

We combine datasets from the classification benchmarks GLUE (Wang et al., 2019b)
and SuperGLUE (Wang et al., 2019a), which mostly contain binary classification tasks,
with datasets from more diverse domains and with larger label set sizes. Table 4.1
provides an overview of the task, domain, training set size and number of labels per
dataset.2 For each dataset, we perturb the labels of 15% of the training examples (‘noisy’
examples, x ∈ Xn, y ∈ Yn), with the new label randomly drawn from all labels but the
original one. The remaining 85% is unperturbed (‘clean’ examples, x ∈ Xc, y ∈ Yc). The
tasks generally fall into four categories. The first five datasets capture varying aspects
of generic natural language understanding,3 and were previously included in either
the GLUE or the SuperGLUE benchmarks:

1. CoLA: this dataset includes sentences from books and journals on linguistic theory,
and requires indicating whether a sentence is grammatical (Warstadt et al., 2019);

2Appendix B provides URLs for the various datasets and elaborates on the licenses associated with
the datasets.

3Note that the subdivision into the four groups of tasks is a way to organise our experimental results
rather than a prescriptive categorisation: we are not necessarily stating that sentiment, hate speech or
topic classification are not NLU tasks.
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Table 4.1: Datasets with their domain, label set size and training set size. Going forward,
datasets are marked consistently in figures using the same colours and symbols.

2. MRPC: this dataset requires indicating whether two sentences are each other’s
paraphrase for examples from the Microsoft Research Paraphrase Corpus (Dolan
and Brockett, 2005);

3. RTE: this is a small-scale dataset for the task of recognising textual entailment,
including an ‘entailment’ and a ‘non-entailment’ class, containing data from various
annual textual entailment challenges gathered by Wang et al. (2019b);

4. BoolQ: this binary classification task from Clark et al. (2019a) requires, given a
Wikipedia passage and a Google query, a yes or no answer to the question;

5. WiC: this dataset contains binary labels indicating whether the same sense of a
word is used in two different sentences (Pilehvar and Camacho-Collados, 2019).

Next, we include two datasets for the task of hate speech classification:
6. ImplicitHate: this dataset includes tweets that are assigned one of seven labels

indicating the type of hate speech present (ElSherief et al., 2021). The different
classes include examples of grievance, incitement, inferiority, irony, stereotypes
and threats. All remaining examples are labelled as ‘other’;

7. Stormfront: this dataset includes snippets from a white supremacist forum, with
labels indicating whether or not they contain hate speech (de Gibert et al., 2018).

We also include three datasets for sentiment-related tasks:
8. SST-2: sentiment classification using two classes (positive and negative) for the

Stanford Sentiment Treebank (SST) (Socher et al., 2013). Instead of using the
GLUE-based version of SST – that includes full sentences, but also sub-sentences
– we only include full sentences, to make SST-2 more comparable to SST-5;

9. SST-5: sentiment classification using five classes (very negative, negative, neutral,
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positive and very positive) from SST (Socher et al., 2013);
10. Emotion: tweets that are labelled using one of the emotions of anger, fear, joy,

love, sadness, and surprise. We use a publicly available 20k split of the dataset,
which is a subset of the data originally published by Saravia et al. (2018).

Finally, we use two datasets for the task of topic classification:
11. Reuters: we use the ModApte split of the Reuters text classification dataset (Apte

et al., 1994), and restrict the examples to those that are assigned one topic, using
labels that appear at least 100 times (‘earn’, ‘acq’, ‘crude’, ‘trade’, ‘money-fx’,
‘interest’, ‘money-supply’ and ‘ship’). By sticking to one label, we can reliably
perturb the label as with the other datasets. This text classification task involves
predicting the topic of snippets taken from the Reuters financial news service;

12. TREC: this question classification dataset includes questions that are predominantly
from the news domain (Li and Roth, 2002), and labels questions as abbreviations,
entities, descriptions, humans, locations or numerical values.

4.2.2 Language models

We analyse four pretrained LMs: BERT-base (Devlin et al., 2019), OPT-125m (Zhang
et al., 2022b), Pythia-160m (Biderman et al., 2023) and GPT-Neo-125m (Black et al.,
2021; Gao et al., 2020). The models are all transformer-based but have different types
of transformer layers, and vary in their pretraining data and pretraining procedure as
previously laid out in §2.1.2. The variants used for the majority of the experiments
have twelve layers each, but we also explore how the results change when we move
from OPT-125m to OPT-1.3B in §4.5.1. We fine-tune each model separately for the twelve
tasks; Appendix B describes the hyperparameters and technical setup used for training.
Fine-tuning is performed by introducing a randomly initialised classification head, and
the input to that head is the [CLS] token for BERT and the final token in the sequence
for the other models. We freeze the input embeddings to ensure that memorisation is
limited to the layers, and fine-tune the layers along with the classification head. This
type of fine-tuning was introduced by Devlin et al. (2019) (as discussed in §2.1.2) and
was the de facto standard for modifying LMs for downstream tasks for years afterwards,
although recently supervised fine-tuning has been popularised that fine-tunes lexical
heads for downstream tasks rather than learning a new classification head (e.g. as
is the case for Phi-3 and Llama-3 models, two SOTA systems at the time of writing
the thesis; Grattafiori et al., 2024; Abdin et al., 2024). The pretrained models (θP )
are fine-tuned for 50 epochs, and checkpoints are stored when the training accuracy is
near-ceiling (θM1), and at the end of training (θM2). We also train models using the
original labels (θO), using the same random seeds as θM1 and θM2 . Results reported
in §4.2.4 and §4.5 are based on one fine-tuning seed, and the remainder of the chapter
reports results computed using three seeds. Seeds control the data presentation order
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and the initialisation of the classification heads.

4.2.3 Localisation techniques

We apply four localisation methods, which we detail in this subsection.

Layer retraining and layer swapping First, we perform layer retraining, similar to
Maini et al. (2023). We reset layers of interest using weights from θP , freeze the
remaining layers using weights from θM2 , and retrain using clean examples for five
epochs. If the resulting model maintains its performance on noisy data, the retrained
layers are redundant in terms of memorisation. If the performance on noisy data
decreases, that does not guarantee that memorisation can be localised to the retrained
layers since the retraining objective may have multiple minima, of which only some
maintain the memorisation performance. We retrain consecutive layers of window sizes
ranging from one to twelve.

Alternatively, we swap layers between θM2 and θO, using the same window sizes. If
swapping layers leads to a drop in performance on noisy examples while maintaining
performance on clean ones, it becomes more likely that the layers were vital for memori-
sation (although this is again not guaranteed). We indicate layer relevance using the
memorisation error: the ratio of incorrect predictions for noisy examples. The lower
the error rate for noisy examples when retraining or swapping a layer, the less likely it
is that this layer was crucial for memorisation.

Retraining or swapping all twelve layers means modifying the full model, and provides
a baseline for the maximum error we can expect for the noisy data. In the results
section, we will use this to normalise the results, such that the memorisation error is
1.0 when modifying all twelve layers.

Forgetting gradients We also inspect gradients, computed by back-propagating
−L(Xn,Yn,θM1) and computing the L1-norm per layer. We use θM1 due to gradi-
ent saturation in θM2 .4 The assumption is that memorisation is localised in the layers
requiring the largest updates when ‘forgetting’ noisy labels. Because gradient magni-
tudes do not reliably pinpoint layers, we used two tasks to decide on the norm to use and
whether or not to normalise gradients using gradients for clean examples and gradients
for a frozen model – we estimate these hyperparameters for gradient preprocessing using
two of the twelve tasks as detailed in Appendix B.2.

Probing Lastly, we train behavioural probing classifiers (Alain and Bengio, 2017;
Conneau et al., 2018; Hupkes et al., 2018), introduced in §2.1.4, to predict whether,

4See Akyürek et al. (2022) for a discussion of issues with gradient-based methods when tracing
knowledge in a model.
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Figure 4.2: Control setup accuracy@1 (light) and accuracy@2 (dark) per localisation method,
dataset or model (computed using probing and gradients), and a random baseline (dashed).

for a hidden state encoding x in layer l (h(x)l ), x ∈ Xn or x ∈ Xc. The classifier is an
MLP with one hidden layer, trained for 100 epochs maximum with a learning rate of
2e−4. The hidden states come from training examples that are redistributed into a
training, validation and test set for the probe. The classifiers are trained separately per
layer, using five random seeds per layer. We extract the F1-score on the test partitions
and use the increase from l−1 to l as an indication of l’s involvement in memorisation
(except for layer 1, which we compare to the F1-score from a probe trained on θP ).

4.2.4 Control setup: does localisation succeed?

We now evaluate the localisation techniques by enforcing memorisation in pre-specified
layers and examining whether the techniques pinpoint those layers (i.e. whether locali-
sation succeeds).

Experimental setup We approach this as a multitask learning setup, to ensure all layers
are fine-tuned, but only two are modified by the task with noisy labels: the entire model
is fine-tuned using RTE, while the remaining task can only modify two layers at a time
(layers one and two, six and seven or eleven and twelve). We train the model separately
for the remaining eleven tasks and these three different choices of layer combinations.
Afterwards, we first use MRPC and TREC to validate the postprocessing steps for the
forgetting gradients (see Appendix B.2), after which all localisation techniques were
applied to the remaining nine tasks. We evaluate the techniques using accuracy@k,
indicating the percentage of the k highest-scoring layers that were among the correct
ones for that setup, computed for k ∈ {1,2}.

Results Figure 4.2a summarises the accuracies per localisation technique. Swapping
and retraining are very accurate, but gradients and probing are less reliable, with
accuracy@1 just over 60%. Note that the near-perfect accuracy for retraining and
swapping here does not guarantee perfect accuracy in the uncontrolled setup; the per-
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Figure 4.3: Memorisation error for layer swapping and retraining for two datasets, for the
OPT model.

layer freezing is just very well-aligned with the per-layer approach of those techniques.
The accuracy per dataset (Figure 4.2b) only shows slight variations. For the two lowest-
scoring localisation techniques (probing, gradients), Figure 4.2c details the accuracies
per model. Pythia scores particularly badly for the gradient analysis, for which the
accuracies barely exceed the baseline. Postprocessing (Appendix B.2) did not help,
which underscores gradients’ unreliability.

4.3 Results for memorisation localisation

We now apply the localisation techniques to models for which all layers have been
fine-tuned for one task at a time. The results indicate how important each layer is for
memorisation, per dataset, per model. We cannot simply aggregate over all results
(twelve layers × twelve datasets × four localisation techniques × four models), because
the absolute scores returned by different techniques are not directly comparable. We
discuss the results per localisation technique.
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(b) Layer retraining

Figure 4.4: Maximum memorisation error over twelve layers when modifying one layer; dots
represent datasets. Jitter along the x-axis was added to improve visibility.

4.3.1 Layer swapping and retraining

When swapping or retraining layers, we gradually modify more and more layers in θM2 ,
either using weights from θO, or by retraining layers using clean examples.5 We modify
one to twelve layers at a time, and measure the effect on the memorisation error.

Case study: RTE vs SST-2 Before discussing trends across all datasets, we inspect two
specific sets of results to gain a deeper understanding of the data. Figure 4.3 details
memorisation error rates for RTE and SST-2 (for OPT): in these matrices, value z in row
x, column y, indicates that for all layer combinations of x consecutive layers including y,
z was the mean error rate. We show the results separately for swapping and retraining.

Which commonalities and differences do we observe? For both datasets, modifying
a few layers only yields low error rates (see the top few light green rows), and fully
reverting memorisation requires modifying seven to ten layers. Memorisation is thus not
limited to a few layers, but, instead, dispersed over the model. Despite these similarities,
the datasets differ in which layers appear the most crucial for memorisation: for RTE,
modifying early layers leads to the largest increase in memorisation error, whereas for
SST-2, both the very first layers and layers in the middle appear most relevant.

Aggregating results The findings for these two tasks are echoed in the overall swapping
and retraining results. Firstly, memorisation is not confined to individual layers:
modifying individual layers barely affects the memorisation error. This is shown in
Figure 4.4, which provides the memorisation error when modifying one layer only, taking

5When modifying parameters internally, one should try to ensure that changes to the model that go
beyond the main capability focused on, are minimal. To that end, when layer swapping, we monitor
errors on clean examples to ensure that the mixture of models θO and θM2 differs only in terms of
predictions for noisy examples; the mean error for clean examples over all windows was 0.3%. When
layer retraining, we similarly monitor errors on clean examples: for examples that were included in the
retraining training set, this error is 0.2%, whereas for examples that were in the original training set
but retraining validation set, this error is 7.6%.
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Figure 4.5: Layer swapping results (top), gradients’ norms’ (middle), probing scores (bottom
row, the increase between layers indicates layer relevance). From left to right, columns
represent NLU tasks, sentiment tasks, hate speech classification and topic classification.
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Figure 4.6: M-CoG coefficients for layer retraining, that give a coarse indication of whether
lower or higher layers matter more for memorisation.

the maximum over layers (i.e. highlighting the largest error increase), showing datasets
as dots. For most model-dataset combinations, the memorisation error rate is below
15% when modifying one layer. This agrees with findings from Maini et al. (2023), who
similarly employed layer retraining to identify that memorisation in image classification
is not confined to individual layers.

Secondly, the importance of layers does appear task-dependent. To investi-
gate this more systematically, we express layer relevance using the mean memorisation
error, computed by averaging over rows in the result matrices of layer swapping and
layer retraining. Figure 4.5 details this error per model and per dataset, where the
top row of each subfigure shows the layer swapping results for one model.6 Across the
board, early layers matter more for memorisation – as can be seen by the presence
of predominantly negative slopes in these figures – but that effect is more prominent
for the group of NLU tasks than for the other groups – as can be seen by the slope
steepness. For BERT and OPT, in particular, there appear to be tasks that have nearly
uniform memorisation errors for the different layers, emphasising that memorisation
appears more distributed in these models, and less distributed in GPT-N and Pythia.

We can summarise the per-layer weights by computing a Memorisation Centre-of-
Gravity (M-CoG), which is a weighted sum of all layers with weights summing to 1:

∑
12
i=1 αi ⋅ i. For layer swapping and retraining, αi is the normalised memorisation error

for layer i, as depicted in Figure 4.5. Figure 4.6 displays the M-CoG coefficients for
layer retraining, per model, and Figure 4.7 provides M-CoG coefficients per dataset
by averaging over models and over localisation techniques. The results show strong
agreement between models in terms of the relative ordering of tasks, which is

6We omit layer retraining from this figure because of the high correlation between the results of layer
retraining and layer swapping.
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Figure 4.7: M-CoG coefficients shown per dataset and per localisation technique (left, thus
averaged over models) or per model (right, thus averaged over localisation techniques).
Error bars show standard deviations.

supported by the average pairwise correlation of the data from Figure 4.6 being 0.85
(Spearman’s ρ). We also note that there is a very high correlation between the results
from layer swapping and layer retraining: this correlation is ρ = 0.97 for the M-CoG
coefficients (Figure 4.8a), and ρ = 0.91 for the raw layer weights (Figure 4.9a).

4.3.2 Probing

In Figure 4.5, the subfigures’ bottom rows display the probing performance for the four
models. The increase from layer to layer indicates the layers’ relevance. We first observe
that the performance typically does not decrease for deeper layers – i.e. representations
do not ‘lose’ information about the fact that some examples are noisy. Secondly, the
performance is quite low for NLU tasks, especially, which could mean that clean and
noisy examples are more alike for these tasks than for the remaining tasks. Lastly, in
accordance with the previous results, the probing performance does not change suddenly
– i.e. memorisation is not local to individual layers – and tasks differ in how
the probing performance changes over layers: performance flattens early for
some tasks, such as RTE
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. For Pythia, probing performance peaks earlier than for the other models,
indicating that the lower layers are extra important for this model.

To draw more generic conclusions, we compute the M-CoG coefficients by using
the per-layer increase in probing performance as weights. Figure 4.7a includes the
M-CoG averaged over models and demonstrates that, across the board, probing puts
a larger emphasis on deeper layers compared to layer swapping and retraining. The
M-CoG of probing have a moderately positive correlation to the swapping and retraining
coefficients (see Figure 4.8a), and raw weights per layer have a weakly positive correlation
to swapping and retraining (see Figure 4.9a).
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Figure 4.9: Spearman’s ρ, comparing raw layer-wise scores from different localisation
techniques and models. When comparing models, we collect weights from four techniques.
Those are not directly comparable, so we apply min-max normalisation per technique.

4.3.3 Gradient analysis

Finally, we inspect the gradient norms, post-processed as described in Appendix B.2.
In Figure 4.5, the middle rows of each subfigure visualise gradient norms per model.
Visually, the results of the different models show some qualitative differences; most
notable is that for BERT and OPT, there is a slight increase in the norm for the final layers
that is absent for GPT-N and Pythia, and that for Pythia the results across datasets
are quite similar. In spite of these differences between models, the ordering of layer
relevance for the different tasks is not too dissimilar from the previous localisation
methods: the M-CoG coefficients obtained using gradient norms correlate strongly with
layer swapping and retraining, and moderately with probing (Figure 4.8a), and the raw
layer scores correlate moderately to strongly with layer swapping and retraining (but
weakly with probing) (Figure 4.9a). We should interpret these results with caution since
when running the control setup, the gradients failed to pinpoint the correct layers for
Pythia completely (§4.2.4). That gradients agree with swapping/retraining supports
our overall findings, but we recommend against relying solely on gradients to pinpoint
memorisation localisation.
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Figure 4.10: Visual explanation of the centroid analysis, using data from TREC.

4.3.4 Intermediate conclusion

In this section, we have taken a closer look at the layer-based memorisation localisation
results for mislabelled (‘noisy’) examples, and inspected aggregated results for all
techniques and models via M-CoG coefficients. Because memorisation is not strictly
localised to individual layers, these coefficients lie close to the middle layer, but they
do generally skew towards earlier layers and provide us with an ordering of tasks. The
most notable pattern in that ordering is that the earlier layers are the most important
for the NLU tasks, in particular. This is somewhat surprising since the NLP community
would typically consider an NLU task, such as natural language inference, to be more
complex than something like topic classification, and assumes higher-level tasks to be
processed in higher layers.7 If that is the case, it seems natural for memorisation to also
happen in higher layers, but this appears to be contradicted by our experiments. At the
same time, we know that lower layers affect higher layers, not only because the hidden
representation of layer l feeds into layer l+1, but also because of the residual stream.
The higher relevance for lower layers may not necessarily mean that they encode more
of the memorised noisy labels. Instead, they could be more relevant due to their steering
function, indirectly influencing higher layers too. We will return to this discussion in the
next section. Independent of why the lowest layers appear most relevant, the differences
between groups of tasks observed remain.

Although this section has concentrated primarily on the comparison of localisation
methods, we finally note that when computing correlations between models (Figures 4.8b,
4.9b), these are strongly positive, except for Pythia, yielding more moderate correlations.
That suggests that our results are not specific to one training setup, but somewhat
generic to twelve-layer transformer-based pretrained LMs.

7E.g. Müller-Eberstein et al. (2023) show that for topic classification in BERT-base (using unperturbed
datasets), the centre-of-gravity as defined by Tenney et al. (2019) lies around layer 4/5 for topic
classification, whereas for natural language inference it is layer 11.
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Figure 4.11: Centroid analysis visualisations, showing graphs for OPT for all twelve datasets.

4.4 Making memorisation interpretable via centroid analysis

The results from §4.3 suggested that earlier layers are the most relevant for memori-
sation. To better understand why, we make models’ internal processing of memorised
examples more interpretable through a centroid analysis. We examine pairs of classes,
monitoring examples with original class yb and noisy class ya, for all pairs of a and b,
for models θM2 . We compute the centroids of the hidden representations from the two
classes, and determine the line that goes through the two centroids. Then, we compute
the projections of all remaining points onto that line, measuring the distance between
the line’s anchor point (centroid a) and centroid b, normalised by the distance between
the two centroids. This is performed separately per layer. In layer one, points belonging
to ya and yb largely overlap. Towards layer twelve, the two classes are fully separated,
and in between, the memorised examples move away from centroid b and move towards
centroid a. Figure 4.10 explains this via annotations for TREC.

Figure 4.11 provides centroid analysis visualisations for all datasets using OPT, and
Figure 4.12 demonstrates for three datasets how the results vary between the four
models. Consistent across models and datasets is that noisy examples moving from
b to a happens gradually over the course of many layers, and typically already starts
in the lowest layers. This agrees with the results from the previous section, where
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Figure 4.12: Centroid analysis visualisations for four datasets, for all four models.

we found that memorisation is not confined to individual layers, but is a cooperative
process of many different layers, where lower layers are more important than deeper
ones. With regards to those lower layers, the centroid analysis appears to suggest that
their relevance is (as considered in §4.3.4) at least partially due to steering higher layers.
After all, the representations of noisy examples do not necessarily consistently show
more change in the first few layers, even if the first few layers generally received the
highest relevance scores in the previous section.

We can also use the centroid analysis to visualise the effect of layer swapping, and
further examine the roles of lower and higher layers. We construct models where the
bottom six or top six layers come from θO, and the remaining components come from
θM2 . For all datasets, we can prevent the noisy examples from moving closer to centroid
a than b (on average) by replacing the bottom six layers, but for only a minority does
replacing the top six have a similar effect. For instance, for OPT, when replacing the top
six layers, the noisy examples remain closer to their original class only for four out of the
twelve datasets (TREC, Reuters, Emotion and Stormfront). Figure 4.13 visualises the
effect that swapping layers has on OPT through the centroid analysis, for three datasets:
in the first row, the bottom six layers come from θO, whereas in the second row, the top
six layers come from θO. Replacing the bottom six is clearly more effective at keeping the
noisy examples close to their original class yb than replacing the top six; yet, replacing
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Figure 4.13: Illustration of the effect replacing 6 layers has, for MRPC, Stormfront and TREC

data, for OPT. The bottom six layers come from one model, the second six layers come from
another, as indicated in the subcaptions.

the top six is more effective for TREC and Stormfront than MRPC. This underscores that
even if memorisation is gradual, it starts early. Because of that early start, intervening
earlier rather than later is more successful; once the hidden representations have moved
closer to a, applying the deeper layers from θO is insufficient to revert memorisation. At
the same time, when replacing the top six, we do observe that noisy examples’ hidden
states do not necessarily move closer to their new class than they already were after
layer six – i.e. their distance to centroids a and b stabilises. This nuances the steering
function of lower layers: higher layers cannot be steered without being trained to do so;
memorising noisy labels truly is a cooperative process between layers.

Task/dataset differences The demonstration of how layer swapping affects the model
internally underscores that there are differences between the various tasks and datasets.
Visual inspection of Figure 4.11 also indicates that there can be substantial differences
between datasets, primarily in terms of how and when the noisy examples move from b

to a, and what the overlap of the underlying distributions for ya and yb looks like. To
summarise these differences, we compute two statistics: the crossing – the first layer in
which the noisy mean is closer to a than to b – and classification initiation – the first
layer without overlapping distributions for the two classes. Figure 4.10 provides a visual
explanation of what these two statistics represent. We aggregate these statistics over
models in Figure 4.14a. Many NLU tasks have a crossing that is ‘earlier’ than their
classification initiation (e.g. RTE
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). The two events are closer together for
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)
have crossings that are relatively ‘late’ compared to their classification initiations.
This underscores the findings from §4.3: sentiment and hate speech tasks, and topic
classification, in particular, rely more heavily on deeper layers for memorisation.
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Figure 4.14: Summary of the memorisation and classification onset for all datasets, averaged
over models, computed using the centroid analysis or via probing.
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Figure 4.15: We train probes to predict the noisy label (solid line, shown for noisy examples)
or the original label (dashed line for noisy examples, dotted line for clean examples).

Consolidation via probing The centroid analysis relies on low-dimensional projections
of the hidden representations. To consolidate that we reach similar conclusions about
the depth of the crossing and classification initiation using different methods, we train
behavioural probing classifiers to predict an example’s class from the hidden state,
using (i) original or (ii) noisy labels. Figure 4.15 shows a) test F1-scores of the noisy
examples for the original label (dashed line), b) test F1-scores of the noisy examples
for the perturbed label (solid line), and c) the performance on clean examples when
training with the original labels (dotted line). Tasks vary widely in terms of when the
F1-score for noisy labels exceeds that of the original labels. This happens early on for
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), the probe is
better at predicting the original label before it can predict the noisy one.

We apply the probes to noisy examples and compute a statistic similar to the
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Correlates all BERT OPT GPT-N Pythia

- Generalisation score (thresholding applied)
crossing 0.75 0.88 0.94 0.94 0.72
memorisation»generalisation 0.63 0.86 0.88 0.94 0.69
M-CoG 0.56 0.78 0.69 0.92 0.69
- Validation score (normalisation applied)
crossing 0.70 0.90 0.84 0.83 0.70
memorisation»generalisation 0.61 0.90 0.77 0.76 0.77
M-CoG 0.54 0.80 0.52* 0.72 0.69

Table 4.2: Spearman’s ρ relating memorisation for the 12 tasks to models’ generalisation
performances. *: p>0.05

crossing: the layer at which the F1 of probe ii exceeds the F1 of probe i with ten
percentage points, referred to as ‘memorisation»generalisation’ in Figure 4.14b. The
timing of this event very strongly correlates with the crossings (Spearman’s ρ = 0.84).
We apply the probes to clean examples to compute a statistic similar to the classification
initiation: the layer at which the probes’ F1 for clean examples (normalised by random
guessing performance) reaches 90%. The depth of this event strongly correlates with
classification initiation (ρ = 0.73). Together, these two events thus tell a story similar to
that of the centroid analysis (Figure 4.14b), but with starker differences between the
topic classification datasets and the remaining ones.

Memorisation’s connection to generalisation When inspecting model internals, we
have seen that the depth of memorisation (quantified as M-CoG coefficients, the ‘crossing’
and ‘memorisation»generalisation’) appears anti-correlated with the difficulty of a task.
However, we have yet to have a proper way of quantifying that difficulty. We firstly take
θM2 ’s accuracy on validation data, measuring the percentual increase compared to
random guessing performance to make the numbers more comparable across tasks and
datasets. Secondly, we compute a metric akin to the generalisation score introduced
in chapter 3, by training on a randomly selected 50% of the data, and evaluating
on the held-out 50%, repeated with 30 random seeds to obtain a robust estimate of
the generalisation score for all datapoints. Instead of taking the generalisation score
directly, we apply thresholding by computing the percentage of examples for which
the generalisation score exceeds random guessing, to account for the different label
set sizes. As indicated in Table 4.2, these two metrics correlate moderately with the
memorisation depth when combining data from all models (Spearman’s ρ > 0.54), with
most correlations being stronger when examining results per model. All in all, this
suggests that the better a model generalises a task to new data, the more deeper layers
are involved in memorisation.
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(b) SST-2
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(c) TREC

Figure 4.16: Layer swapping results for three datasets, for OPT-1.3B containing 24 layers.
The graphs show the error rate for noisy examples, that goes from 0% when swapping only
1 layer to 100% when swapping all layers.

4.5 Going further: varying tasks and model size

In the previous sections, the results relied on four models of the same size (using twelve
layers each) and the datasets as detailed in §4.2.1, which are quite varied in terms of
their label set sizes. Here, we explore how the results would have differed had we used
a larger model or a more uniform setup for the different datasets.

4.5.1 Increasing model size

Firstly, to examine to what extent the results observed were specific to 12-layer architec-
tures, we apply layer swapping to the 1.3B variant of OPT, containing 24 layers and ten
times the number of parameters of the other models we considered. Figure 4.16 firstly
provides three example matrices, similar to the ones discussed in §4.3.1. For all three
datasets shown, swapping the middle layers most effectively reverts memorisation when
considering the smaller window sizes. Still, there are clear distinctions between the
three datasets, too: for RTE the middle layers appear most relevant, whereas for SST-2

and TREC the upper layers are more relevant than for RTE. Figure 4.18 averages the rows
from the matrices to summarise results across the twelve datasets, displaying a pattern
similar to what we observed before, with NLU tasks relying more heavily on (relatively
speaking) lower layers than the remaining tasks. The agreement is also reflected in
Spearman’s ρ comparing the layer swapping M-CoG coefficients for OPT-1.3B to the
coefficients of the smaller models: ρ = 0.73 for Pythia, ρ = 0.84 for GPT-N, ρ = 0.75 for
BERT and ρ = 0.87 for OPT (small). When we execute the centroid analysis and summarise
the results using the crossing and classification initiation events (Figure 4.19a), we
similarly observe that the crossings correlate very strongly with the crossings from the
four models (ρ = 0.94), although the classification initiations correlate very weakly with
OPT-1.3B (ρ = 0.15, but p > 0.05).
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Figure 4.17: CCA similarities of hidden states from θP and θM2 , averaged over datasets.
Error bands capture 95% confidence intervals. (c) compares OPT models, with min-max
normalisation applied to the similarities and the layers shown relative to the model size.
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Figure 4.18: Per-layer memorisation error rate, averaged over all window sizes during layer
swapping for OPT-1.3B. A higher error rate suggests higher relevance for memorisation.

In spite of the agreement in terms of the ordering of tasks, there is a difference
compared to the results of the twelve-layer models since the lowest layers (in absolute
terms) appear much less relevant. One potential cause could be the interaction of
memorisation with general fine-tuning training dynamics: various sources identify that
lower layers are less affected by fine-tuning procedures compared to deeper layers
(Merchant et al., 2020; Mosbach et al., 2020, 2021), and this might be exacerbated in
deeper models. To investigate this for our own models, we gather hidden representations
for the training data using θM2 (the same representations used for probing) and compare
them to the corresponding hidden representations from θP . We compare them using
CCA, a technique described in §2.1.4 that finds linear transformations of two sets of
representations such as to maximise the correlation between them. Figure 4.17 presents
those CCA similarities for the twelve-layer models and for OPT-1.3B. Because OPT-1.3B’s
representations have higher similarities across the board, we compare the two OPT models
in Figure 4.17c by min-max scaling, which demonstrates that, relative to the smaller
model, earlier layers are less affected by fine-tuning in OPT-1.3B.

Interestingly, with the results in Figure 4.17a, we have stumbled upon another
finding, which is unrelated to the model sizes: the earliest layers are by far the most
affected in Pythia. Previously, in Figure 4.7b, we already noticed that this model has
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(b) Multi-class tasks
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(c) Binarised tasks

Figure 4.19: Summary of the memorisation and classification onsets for (a) OPT-1.3B and
for the four twelve-layer models for the (b) multi-class tasks and (c) their binarised versions.
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Figure 4.20: M-CoG coefficients for layer swapping, comparing multi-class to binarised tasks.
Error bars show standard deviations over models.

M-CoG coefficients that are quite low, which fits with the more generic observation
that earlier layers are more relevant, but that ‘early’ might be relative to the effects of
fine-tuning. What could drive these out-of-the-ordinary fine-tuning effects on Pythia? If
we reconsider the different architectures laid out in §2.1.2, the most prominent difference
to the other three models is the parallelised layout of the transformer layer. Previously,
pre-normalised transformer layers were proposed to improve upon post-normalised
layers suffering from vanishing gradients (e.g. for discussions on the behaviour of pre-
normalised transformer, see Xiong et al., 2020; Takase et al., 2023). We hypothesise that
the more shallow computational graph of the parallelised layer dampens the effect of
vanishing gradients even more, because of the reduced number of consecutively applied
LayerNorm operations. Investigating this further lies outside the scope of this chapter.

4.5.2 Binarisation of tasks

Finally, having identified that our tasks differ in terms of the layers that matter most for
memorisation, we should also note that the tasks and datasets with the largest M-CoG
coefficients in §4.3 and the deepest crossings in §4.4 also happen to be the tasks that do
not have a binary label set – e.g. consider Figure 4.14a, where among the six deepest
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crossings, there are five from multi-class tasks. To ensure that the effect observed is
not specific to tasks with a large label set size, we now change the multi-class tasks
(SST-5, Emotion, ImplicitHate, TREC, Reuters) into binary classification and repeat
layer swapping and the centroid analysis. We do this by taking the most frequent two
classes for a task, and training models again with 15% of the labels perturbed, using
one model seed only. We now compare these models to the same model seed trained on
the multi-class variant of the same tasks.

For layer swapping, the M-CoG of the multi-class and binary setups correlate with
Spearman’s ρ = 0.84, combining datapoints from all four models (see Figure 4.20); those
same coefficients have a mean difference of -0.05 and a mean absolute difference of 0.16,
meaning that overall, the coefficients differ only slightly.

When we repeat the centroid analysis and compute the crossing and classification
initiation events, those similarly correlate strongly before and after binarisation (ρ = 0.90
with p < 0.05 for the crossing and ρ = 0.67 with p > 0.05 for the classification initiation).
Figure 4.19c shows the events when averaged over models. And when we look at the
absolute numbers obtained for these two events, the crossing is an average of 0.85 layers
earlier, and the initiation is an average of 0.45 layers later, meaning that although the
binarised tasks yield slightly different results, they still starkly differ from the results
obtained for the group of NLU tasks.

4.6 Conclusion and discussion

In this chapter, we set out to contribute a crucial piece of the puzzle in the memorisation
localisation landscape, by employing an experimental setup that is the NLP equivalent
of seminal work from CV. Whether earlier layers or deeper layers are more responsible
for memorisation has been widely discussed, and our contribution helped us determine
whether the ‘deeper layers’ answer from CV truly contrasts with the ‘lower layers’
answer from the majority of NLP studies, or whether that was simply unique to noise
memorisation. We performed memorisation localisation using classification tasks by
perturbing a subset of the labels and tracing those ‘noisy’ examples over layers. Applying
four localisation techniques to four models crystallised that memorisation is not local to
specific layers but a cooperative process of weights from many layers.

Nonetheless, not all layers appear equally important. Overall, early layers are more
important than later ones, which is supported by both the results from §4.3 and the
centroid analysis in §4.4: the model’s manipulation of memorised examples starts in
lower layers, and to prevent memorisation, early intervention was thus more successful
than late intervention. Lower layers do not necessarily fully implement memorisation,
but might also steer higher layers. At the same time, the visualisation of layer swapping
in §4.4 demonstrated that memorisation truly is a cooperative process between layers,
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since higher layers cannot be steered unless they are trained to do so. We mainly
discussed results for 12-layer models, and demonstrated, for a subset of the results, how
they change when moving to a 24-layer model. This consolidated that memorisation is a
gradual process, and taught us that it is still the earlier layers that are more important,
but that ‘early’ might be relative to the model’s size and is affected by the fine-tuning
procedure. This is not in accordance with the generalisation-first, memorisation-second
hypothesis but does agree with the most recent work on image classification in CV by
Maini et al. (2023) – who found noise memorisation to be dispersed over layers. It
also aligns with the related work from NLP that primarily points to lower layers as
being most responsible for fact memorisation and verbatim memorisation, while also
describing cooperative roles for earlier and deeper layers (e.g. Geva et al., 2023; Chang
et al., 2024; Haviv et al., 2023).

Can we, due to the importance of early layers, conclude that our results falsify
the generalisation-first, memorisation-second hypothesis? The centroid analysis results
suggest that this question requires a nuanced answer due to the variation observed among
tasks. The depth of memorisation is positively correlated with a model’s generalisation
capabilities – i.e. we do observe a generalisation-first, memorisation-second tendency, but
only at the level of the different tasks and not within every individual task. In addition
to observing variation across tasks, we also identified some variation across the four LMs.
Although the per-layer weights of the localisation techniques and the M-CoG coefficients
generally correlated strongly positively across the different models, one model stood out:
Pythia has the lowest agreement with other models, and displays the highest relevance
of earlier layers. We discussed how this could be related to architectural differences
between models, although further investigations would be needed to consolidate this.

Finally, we would like to mention that the dispersed nature of memorisation implies
that editing model weights locally does not necessarily erase memorised information,
even if a flipped label suggests this at the level of the output layer. To give a concrete
example of this, let us take another look at Figures 4.13a to 4.13c, where we replaced
the bottom six layers, which successfully kept the hidden states of noisy examples from
moving towards their newly assigned label. And yet, if we inspect the figures closely,
we still observe some changes to the hidden states in the higher layers, even if that does
not move them all the way to the noisy centroid, meaning that this change might not be
observable in terms of the model’s final prediction. The higher layers thus still capture
some information about the atypicality of these noisy examples. This might be harmless
when purposefully reverting memorisation of mislabelled examples, or when editing
facts about named entities like cities. For fact editing, Hase et al. (2023) demonstrated
that editing success does not correlate well with fact localisation results – i.e. you can
change the behaviour of the model by changing layers that did not initially seem to
encode that information. This underscores that there is a difference between behavioural
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changes in the model and true erasure, where the latter is much more important when
considering memorisation of PII (e.g. Carlini et al., 2021). If PII is similarly encoded in
a distributed way, editing information locally in individual layers might keep the model
from emitting it at the output level, but might not actually remove the information from
the entire model. This might be one of the reasons why safety measures can easily be
reversed in pretrained LMs modified to reduce harmful outputs (e.g. Zhan et al., 2024).
How to reliably remove information encoded in a distributed manner is an important
avenue for future work.

4.6.1 Limitations

We identify five main limitations of our work, of which the first is that our data reflects
a strongly simplified variant of memorisation. To trace memorised examples over
transformer’s many layers, we resorted to label flipping to create ‘noisy’ examples. This
situation is somewhat unnatural when considering real-world examples that require
memorisation from LMs. For example, in the case of sentiment analysis, that might
be a sarcastic phrase whose sentiment is the opposite of what is expected based on
a literal interpretation. We cannot guarantee that our noisy examples behave in the
same way as real-world examples would. Similarly, memorisation of noisy examples
need not affect models in the same way as the memorisation of facts or sequences,
and memorisation during fine-tuning might behave different from memorisation during
pretraining. As laid out in the introduction of this chapter (§4.1), we opted for this
type of data manipulation to create an experimental setup that more closely resembles
that of related work from CV.

Secondly, our analyses were focused at localisation at the level of the layers. Yet,
a layer may not be the right granularity – even when examining whether memories are
stored within an individual layer – since a layer will contain many more parameters
than those memorising the data of interest. As a result, when applying layer retraining
or swapping, we are potentially modifying more than needed. Because of the focus that
related work has had on the layer level, too, we consider our approach to be a valuable
contribution, nonetheless.

Thirdly, we arrived at our conclusions by applying four localisation techniques, but it
should be noted that the localisation techniques themselves are imperfect. In our
control setup (§4.2.4) where only two layers were modified during fine-tuning, probing
and gradient analyses could not accurately pinpoint those two layers, and the techniques
that could pinpoint them (layer swapping and layer retraining) are more reliable at
determining which layers are not crucial for memorisation than at determining which
ones are. Because of the general agreement between the techniques and the results
from §4.3-4.4 we do think our conclusions are robust, but the absolute numbers of layer
relevance should be taken with a grain of salt.
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Related to the imperfection of localisation techniques is the potential unreliability
of the centroid analysis, which we introduced as a way of visualising what is happening
to examples over the different layers. This visualisation is a one-dimensional projection
of hidden representations and thus an extreme simplification of the intricate process of
memorisation. We do not mean to use it as a localisation technique per se, but as a way
to explain the outcomes of other experiments. At the same time, we did observe that
the ‘crossing’, the depth at which the hidden representations are closer to the centroid
of the mislabelled class than their original class, yields similar correlations to models’
generalisation performance as the comparison using M-CoG coefficients. This, at the
very least, suggests the results from §4.3 and §4.4 do align with one another.

Lastly, we analysed the group of noisy examples as a whole and concluded that many
layers work together to gradually shift examples from their original class to the newly
assigned class. However, we have not examined individual examples; it could still
be the case that for individual examples, memorisation is more localised to specific
layers. We only have preliminary results suggesting that individual examples, too, are
memorised over multiple layers, which is the fact that in §4.3, swapping and retraining
individual layers was mostly unsuccessful in increasing the memorisation error rate.

4.6.2 Retrospective and outlook

In this chapter, we reviewed fine-tuned LMs. Fine-tuning has been the predominant
strategy to turn LMs into narrow experts for a given task ever since the release of BERT

(Devlin et al., 2019). However, the community has turned away from applying the
standardised modelling pipeline of pretraining and fine-tuning. Since the early years of
this decade, prompting and in-context learning (consider Liu et al., 2023b; Dong et al.,
2024, for extensive reviews of work in these respective directions) have been widely
explored as data-efficient manners to tune models for tasks on the go. This moved the
focus away from what models acquire during fine-tuning and instead put the focus on
what models may have already memorised during the pretraining stage (as is the case
for fact memorisation and verbatim memorisation). At the time of writing this thesis,
however, fine-tuning is making a ‘comeback’ in a different form: after the pretraining
stage, many models are further trained in a supervised fine-tuning stage, and a stage
that relies on reinforcement learning using human feedback (e.g. for Phi-3 and Llama-3
models; Grattafiori et al., 2024; Abdin et al., 2024). Supervised fine-tuning differs from
traditional fine-tuning in that it prepends a task description to an input example and
fine-tunes lexical heads for downstream tasks instead of learning a new classification
head per task. It is also typically applied in a multitask setup. Otherwise, the setups are
not dissimilar from one another, which is why we expect our main findings concerning
the importance of lower layers to generalise to supervised fine-tuning. The multitask
setup will likely influence the relative ordering of task-specific memorisation in the
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network, but further experimentation would be needed to consolidate this. Our work
remains a key piece in the memorisation landscape, linking insights from CV and NLP,
in spite of the shift towards supervised fine-tuning, but we do recognise that the focus
on traditional fine-tuning is a limitation.

We conclude by noting that the debate on the relevance of earlier vs deeper layers
remains open, as studies that appeared after publication of this chapter offer, again,
conflicting evidence. Menta et al. (2025) bypass the attention mechanisms of GPT-N

and Pythia in various layers, establishing that verbatim memorisation is best prevented
by performing that intervention in the later layers. In contrast, Huang et al. (2024)
show that intervening in hidden representations of the lower layers in Pythia is more
effective at preventing verbatim memorisation. They also emphasise that memorisation
is distributed across layers and input tokens, with certain words acting as ‘triggers’,
such as named entities. While some words in memorised sequences were recalled directly,
others were inferred using general language modelling capabilities. These contrasting
findings are puzzling, yet unsurprising, given the varied answers to the memorisation
localisation question we previously reviewed in §2.2.3. We encourage future work to run
controlled comparisons, either by testing multiple memorisation localisation methods
within a unified setup or by analysing different memorisation types together (e.g. PII,
facts, idioms, noise, verbatim memorisation). Finally, Huang et al.’s insight into the
overlap between memorisation and general language modelling aligns with our finding
that clean and noisy examples are not perfectly separated across layers: there might
simply not be a stark distinction between parameters that store memorised examples
and parameters that perform the main task of interest.
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In the previous two chapters, I discussed memorisation of data primarily as something
that can apply to a range of different examples in our dataset. Our models train
on a dataset, and some examples are memorised, whereas others are not. In this
context, generalisation was discussed as the models’ performance on standardised or
IID evaluation data. I now turn to a more narrow case study of memorisation and
generalisation, within the context of (non-)compositionality. As laid out in §2.3.1,
natural language itself is assumed to be compositional, enabling humans to use language
productively. It allows them to understand and produce sentences they have never
heard before. Whether neural networks are similarly compositional language learners
has been a topic of ongoing debate, and dedicated datasets for studying this have been
reviewed in §2.3.2. Here, generalisation is thus a specific type of OOD generalisation,
where evaluation sets assess whether models have a specific capability related to the
compositionality of language.

At the same time, natural language is not fully compositional, due to, among other
things, formulaic sequences whose meaning deviates from a compositional interpretation.
Memorisation of the correct meaning is crucial if computational models are to understand
such sequences. In the chapters that follow, I approach memorisation through “the
archetypal formulaic sequence” (Wray, 2002): the idiomatic expression. There is thus
a bigger emphasis on what models should memorise instead of what they actually
memorise (which was the focus of the previous chapters).

The second part of the thesis includes two chapters. In chapter 5, based on Dankers
et al. (2022a), I evaluate compositional generalisation in NMT via ‘systematicity’ and
‘substitutivity’ tests, along with studying idiom acquisition during model training
(requiring non-compositional processing, evaluated using the ‘overgeneralisation’ test).
The results underscore that, paradoxically, transformer is both not compositional enough
and too compositional at once. Afterwards, chapter 6, based on Dankers et al. (2022b),
elaborates on internal mechanisms that NMT systems have developed for coping with
idiomatic expressions in translation, digging into how, for example, “out of the blue”
on the source side morphs into “uit het niets” (“out of nothing”) on the target side.
The analyses focus on the extent to which idioms are captured as one unit and on the
interaction between idioms and their surrounding context. We inspect self-attention and
cross-attention patterns, study how hidden representations change over layers, and adopt
(amnesic) probing to identify whether figurative translations can be predicted using
hidden representations. Methodologically, the two chapters thus rely on behavioural
experiments and interpretability studies, respectively.



Chapter 5

The paradox of (non-)compositional
generalisation

5.1 Introduction

Compositionality is assumed to play an essential role in how humans understand
language, but whether neural networks also exhibit this property has long been a
topic of vivid debate (e.g. Fodor and Pylyshyn, 1988; Smolensky, 1990; Marcus, 2003;
Nefdt, 2020). Studies about the compositional abilities of NLP models have mostly
been focused on synthetically generated datasets, with simplified languages, in which
compositionality can be ensured and isolated (e.g. Lake and Baroni, 2018; Keysers
et al., 2019; Hupkes et al., 2020; Kim and Linzen, 2020), as we previously reviewed in
§2.3.2. In such tests, the interpretation of expressions is computed according to the
strong or local definition of compositionality (see §2.3.1 for a discussion of the many
definitions of compositionality) without acknowledging that natural language is riddled
with exceptions to strong compositionality. Idioms are one such example, since the
meaning of most idioms cannot fully be derived from their parts. Still, other examples of
local compositionality violations come to mind as well. Sometimes expressions’ meanings
depend on their parts in a compositional way, but arriving at this meaning requires
a more global approach because disambiguation is needed – for example, consider
homonyms (“these dates are perfect for our dish/wedding”) or scope ambiguities (“every
human likes a cat”).

The tension between local and global forms of compositionality not only inspired
many debates on the most adequate characterisation of natural language, but it also
affects the evaluation of compositionality in NLP models. On the one hand, we want
models to be robust and reliable, for which local compositionality is assumed to be of
help. At the same time, natural languages are rife with formulaic language and other
exceptions to compositionality, thus requiring NLP systems to balance compositional
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Figure 5.1: A visual summary of the three tests we run: systematicity measures translations’
consistency as the context material changes, substitutivity evaluates translations’ consistency
under meaning-preserving synonym substitutions (e.g. replacing “donut” with “doughnut”),
and overgeneralisation evaluates whether translations of idioms (such as learning something
“by heart”) are compositional (“door het hart”) or non-compositional (“uit het hoofd”).

and non-compositional processing adequately.
In this chapter, we discuss this paradox through the analysis of NMT systems’

outputs, contrasting compositional generalisation capabilities to non-compositional
processing and memorisation. Prior to publishing this chapter, there were no existing
evaluation datasets for compositional generalisation in MT for models trained on
natural language. We present new data to address this gap in the literature, where
the data is used to reformulate three theoretically grounded tests from Hupkes et al.
(2020)1: systematicity, substitutivity (both evaluating compositional processing) and
overgeneralisation (evaluating non-compositional processing of idioms). Figure 5.1
provides a visual summary of the three tests. Afterwards, we evaluate transformer
NMT systems (Vaswani et al., 2017) trained on English-Dutch data from the OPUS
corpora collection (Tiedemann and Thottingal, 2020). This chapter thus contributes to
the overarching research question RQ3, with a specific focus on (non-)compositionality:
“To what extent are memorisation and generalisation at odds with one another?” In the
process, we answer the following sub-questions:

1. How can we reformulate theoretically-grounded compositionality tests outside of
toy task scenarios for NMT? We provide a reformulation of the systematicity,
substitutivity and overgeneralisation tests originally proposed by Hupkes et al.,
reimagined for English-Dutch data in an NMT setup, using unaltered natural
language training corpora. We provide our experimental setup and preliminaries
on the data used in §5.2, after which §5.3 lays out how the individual tests are

1I was a core contributor of this article, but it is not a part of this thesis.
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performed.

2. How compositional are NMT systems, and is the source of the errors natural
language variation or model behaviour? We analyse transformer’s compositional
abilities via the systematicity and substitutivity tests (§5.3.1, §5.3.2). In §5.4 we
manually analyse errors made by the models to study the source of those errors.

3. How do NMT systems acquire non-compositional translations of idioms, and how
does this align with generalisation performance? We analyse transformer’s non-
compositional abilities via the overgeneralisation test (§5.3.3), while elaborating on
how compositional generalisation and overgeneralisation change during training.

Our results firstly indicate that models often do not behave compositionally under the
strict, local interpretation. Some inconsistencies in the compositionality tests reflect
natural variation in language, whereas others are actual mistakes. Secondly, we find
that models acquire idiomatic translations in two phases: early on during training, the
models learn to overgeneralise word-for-word translations, and later on, they start to
memorise paraphrased translations. Models’ convergence based on memorisation does
not appear to align with the other evaluation metrics – i.e. BLEU scores on unseen data
and compositional generalisation. Following the description of our tests and results, we
end this chapter in §5.5 with a discussion of our findings, the limitations of our approach
and an overview of work that appeared following the publication of this chapter.

With our study, we contribute to ongoing questions about the compositional abilities
of neural networks, and we provide nuance to the nature of this question when natural
language is concerned: how local should the compositionality of models for natural
language actually be? Apart from an empirical study on the compositionality paradox
and idiom acquisition, our work also presents a call to action to the community: we
should rethink the evaluation of compositionality in neural networks and develop
benchmarks using real data to evaluate compositionality on natural language, where
composing meaning is not straightforward since compositional and non-compositional
examples co-occur.

5.2 Experimental setup

We train transformer models with English as the source language and Dutch as the
target language. In this section, we first elaborate on the training setup used, followed
by an introduction to the data used for evaluation of these models.

5.2.1 Training NMT systems

We train transformer-base models (Vaswani et al., 2017) using the fairseq toolkit (Ott
et al., 2019). Our training data consists of a collection of MT corpora bundled in OPUS
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Training set size BLEU dev BLEU devtest

small 20.79±0.19 20.54±0.39
medium 24.47±0.36 24.27±0.27
full 25.95±0.19 25.72±0.08

Table 5.1: BLEU scores for the ‘dev’ and ‘devtest’ subsets of the Flores datasets, for
models trained on corpora of three sizes, with standard deviations computed over five seeds
per training set size.

# Template

1 The Npeople Vtransitive the Nsl
people .

E.g. The poet criticises the king .
2 The Npeople Adv Vtransitive the Nsl

people .
E.g. The victim carefully observes the queen .

3 The Npeople P the Nsl
vehicle Vtransitive the Nsl

people .
E.g. The athlete near the bike observes the leader .

4 The Npeople and the Npeople Vpl
transitive the Nsl

people .
E.g. The poet and the child understand the mayor .

5 The Nsl
quantity of Npl

people P the Nsl
vehicle Vsl

transitive the Nsl
people .

E.g. The group of friends beside the bike forgets the queen .
6 The Npeople Vtransitive that the Npl

people Vpl
intransitive.

E.g. The farmer sees that the lawyers cry .
7 The Npeople Adv Vtransitive that the Npl

people Vpl
intransitive .

E.g. The mother probably thinks that the fathers scream .
8 The Npeople Vtransitive that the Npl

people Vpl
intransitive Adv .

E.g. The mother thinks that the fathers scream carefully .
9 The Npeople that Vintransitive Vtransitive the Nsl

people .
E.g. The poets that sleep understand the queen .

10 The Npeople that Vtransitive Pro Vsl
transitive the Nsl

people .
E.g. The mother that criticises him recognises the queen .

Table 5.2: The synthetic sentence templates, modelled after synthetic data from Lakretz
et al. (2019).

(Tiedemann and Thottingal, 2020), of which we use the English-Dutch subset provided
by Tiedemann (2020), which contains 69M sentence pairs. To examine the impact of
the amount of training data – a dimension that is relevant because compositionality
is hypothesised to be more important when resources are scarcer – we train one setup
using the full dataset, one using 1

8 of the data (medium), and one using one million
source-target pairs in the small setup. For each setup, we train models with five seeds
and average the results.2

To evaluate our trained models, we adopt Flores-101 (Goyal et al., 2022), which
contains 3001 sentences from Wikinews, Wikijunior and WikiVoyage, translated by

2All training details are listed in Appendix C.2.
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# Template

1 The Npeople (VP TO (VP VB (NP NP (PP IN (NP NP (PP IN NP))))))
E.g. The woman wants to use the Internet as a means of communication .

2 The Npeople (VP VBP (VP VBG (S (VP TO (VP VB (S (VP TO VP))))))))
E.g. The men are gon na have to move off-camera .

3 The Npeople (VP VB (NP NP (PP IN NP)) (PP IN (NP NP (PP IN NP))))
E.g. The doctors retain 10 % of these amounts by way of collection costs .

4 The Npeople reads an article about (NP NP (PP IN (NP NP (PP IN (NP NP (PP IN NP))))))
E.g. The friend reads an article about the development of ascites in rats with liver cirrhosis .

5 The Npeople reads an article about (NP (NP DT NN) (PP IN (NP NP (SBAR (S (WHNP WDT) VP))))) .
E.g. The teachers read an article about the degree of progress that can be achieved by the industry .

6 An article about (NP NP (PP IN (NP NP (PP IN (NP NP (PP IN NP)))))) is read by the Npeople .
E.g. An article about the inland transport of dangerous goods from a variety of Member States
is read by the lawyer .

7 An article about (NP NP (PP IN (NP NP (, ,) (SBAR (S (WHNP WDT) VP))))) , is read by
the Npeople . E.g. An article about the criterion on price stability , which was 27 % , is read by the child .

8 Did the Npeople hear about (NP NP (PP IN (NP NP (PP IN (NP NP (PP IN NP)))))) .
E.g. Did the friend hear about an inhospitable fringe of land on the shores of the Dead Sea ?

9 Did the Npeople hear about (NP (NP DT NN) (PP IN (NP NP (SBAR (S (WHNP WDT)
VP))))) ? E.g. Did the teacher hear about the march on Employment which happened here on Sunday ?

10 Did the Npeople hear about (NP NP (SBAR (S (VP TO (VP VB (NP NP (PP IN NP))))))) ?
E.g. Did the lawyers hear about a qualification procedure to examine the suitability of the applicants ?

Table 5.3: The semi-natural sentence templates used. The syntactic structures for NPs and
VPs in purple are instantiated with data from the OPUS collection, and nouns marked in
blue are instantiated using the same vocabulary used for the synthetic data. The predefined
tokens in black remain the same.

professional translators, split across three subsets. We train the models until convergence
on the development set, with a patience of 10 epochs. The BLEU scores for development
and test sets are shown in Table 5.1.

5.2.2 Preliminaries on the data

While all our models are trained on ‘natural’ data from OPUS, we use different types
of data for evaluation: synthetic, semi-natural, and natural data. In the sections that
follow, we use this data for the compositionality tests, but here, we first explain how
the data was generated.

For our synthetic evaluation data, we consider the data generated by Lakretz
et al. (2019), previously used to probe for hierarchical structure in neural language
models. The data consists of sentences with a fixed syntactic structure and diverse
lexical material. We extend the vocabulary and the templates used to generate the data
and generate 3000 sentences for each of the resulting 10 templates (see Table 5.2).

In the synthetic data, we have full control over the sentence structure and lexical
items, but the sentences are shorter (with an average of 9 source tokens vs 16 in OPUS)
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and simpler than typical in NMT data. To obtain more complex yet plausible test
sentences, we employ a data-driven approach to generate semi-natural data. Using the
tree substitution grammar Double DOP (Van Cranenburgh et al., 2016), we obtain noun
and verb phrases (NP, VP) whose structures frequently occur in OPUS, as is detailed
in Appendix C.1. We then embed these NPs and VPs in ten synthetic templates with
3000 samples each. In Table 5.3, we provide examples for each of the ten templates
used, along with the internal structure of the complex NP or VP that is varied in the
template. Instantiations of the NPs and VPs are drawn from the OPUS corpus, the
synthetic words marked in blue come from the vocabulary used for the synthetic data,
and the words marked in black remain unchanged.

Lastly, we extract natural data directly from OPUS, as will be further detailed in
the sub-sections of the individual tests.

5.3 (Non-)compositional generalisation tests

We redefine three tests from Hupkes et al. (2018) for a setup in which models are trained
on a regular, natural language NMT corpus. In this section, we go over the three tests,
elaborating on the test design, evaluation metrics and results one by one.

5.3.1 Systematicity

One of the most commonly tested properties of compositional generalisation is system-
aticity – the ability to understand novel combinations made up from known components.
In natural data, the number of potential recombinations to consider is infinite. We
choose to focus on recombinations in two sentence-level context-free rules: S → NP VP

and S → S CONJ S. Rather than quantifying systematicity as combinatorial generalisation
using known components (which is highly dependent on the training set and the indi-
vidual model evaluated, and is not as straightforward to measure in NMT), we focus on
the consistency of translation under recombination. This is further elaborated on below.

Test design The first setup, S → NP VP, concerns recombinations of noun and verb
phrases. We extract translations for input sentences from our generated synthetic and
semi-natural data, as well as versions of them with the (1) noun (NP → NP’) or (2)
verb phrase (VP → VP’) adapted. In (1), a noun from the NP in the subject position is
replaced with a different noun while preserving number agreement with the VP. In (2),
a noun in the VP is replaced. NP → NP’ is applied to both synthetic and semi-natural
data; VP → VP’ only to synthetic data. We use 500 samples per template per condition
per data type.

The second setup, S → S CONJ S, involves phrases concatenated using “and”, and
tests whether the translation of the second sentence is dependent on the first sentence.
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The girl sees that the men cry

The girl sees that the men cry , and the poet criticises the king

S→S CONJ S

NP→NP'

The girl sees that the aunts cry , and the poet criticises the king

S→NP VP

The baker sees that the men cry The girl sees that the aunts cry

The girl sees that the men cry

VP→VP'

The painter avoids the mayor , and the poet criticises the king

S1→S1

S1→S
3

'

Figure 5.2: Illustration of the systematicity experiments S → S CONJ S and S → NP VP. Each
experiment involves extracting translations before and after the replacement of the blue
part, and then comparing the translation of the underlined words.

We combine two sentences (S1 and S2) from different templates, and we consider again
two different conditions. First, in condition S1→ S′1, we make a minimal change to S1

yielding S′1 by changing the noun in its VP. In S1 → S3, instead, we replace S1 with
a sentence S3 that is sampled from a template different from S1. We compare the
translation of S2 in all conditions. For consistency, the first conjunct is always sampled
from the synthetic data templates. The second conjunct is sampled from synthetic data,
semi-natural data, or from natural sentences sampled from OPUS with similar lengths
and word frequencies as the semi-natural inputs. We use 500 samples per template per
condition per data type. Figure 5.2 illustrates the different setups experimented with.
The underlined words remain unchanged, and the data manipulation is marked in blue.

Evaluation In related work using synthetically generated data, systematicity is evalu-
ated by leaving out combinations of ‘known components’ from the training data and
using them for testing purposes (see §2.3.2). The necessary familiarity of the com-
ponents (the fact that they are ‘known’) is ensured by high training accuracies, and
systematicity is quantified by measuring the test set accuracy. If the training data is
a natural corpus and the model is evaluated with a measure like BLEU in MT, this
strategy is not available. We observe that being systematic requires being consistent in
the interpretation assigned to a (sub)expression across contexts, both in artificial and
natural domains. We, therefore, focus on consistency rather than accuracy, allowing
us to employ a model-driven approach that evaluates the model’s systematicity as the
consistency of the translations when presenting words or phrases in multiple contexts.

We measure consistency as the equality of two translations after accounting for
anticipated changes. For instance, in the S → NP VP setup, two translations are consistent
if they differ in one word only, after accounting for determiner changes in Dutch (“de” vs
“het”). In the evaluation of S → S CONJ S, we measure the consistency of the translations
of the second conjunct. For the examples listed in Figure 5.2, this amounts to measuring
the consistency of the translation of the underlined words.
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Figure 5.3: Systematicity results for setup S → S CONJ S (a and b) and S → NP VP (c and d).
Consistency scores are shown per evaluation data type (x-axis) and training dataset size
(colours). Datapoints represent templates (○) and means over templates (◇).

Results Figure 5.3 shows the results for the S → NP VP and S → S CONJ S setups. The
average performance for the natural data closely resembles the performance on semi-
natural data, suggesting that the increased degree of control did not severely impact the
results obtained using this generated data. In general, the consistency scores are low,
illustrating that models are prone to changing their translation of a (sub)sentence after
small (unrelated) adaptations to the input. It hardly matters whether that change occurs
in the sentence itself (S → NP VP), or in the other conjunct (S → S CONJ S), suggesting
that the processing of the models is not local as assumed in strong compositionality. We
will further elaborate on the types of inconsistencies observed in §5.4. Models trained
on more data seem more locally compositional, a somewhat contradictory solution
to achieving compositionality, which, after all, is assumed to underlie the ability to
generalise usage from few examples (Lake et al., 2019). This trend is also at odds
with the hypothesis that inconsistencies are a consequence of the natural variation of
language, which models trained on more data are expected to better capture.

5.3.2 Substitutivity

Under the strict interpretation of the principle of compositionality, synonym substitutions
should be meaning-preserving: substituting a constituent in a complex expression with
a synonym should not alter the complex expression’s meaning, or, in the case of MT, its



Chapter 5. The paradox of (non-)compositional generalisation 120

Synonym pair Subordinate clause
British Freq. American Freq.

aeroplane 6728 airplane 5403 that travels by . . .
aluminium 17982 aluminum 5700 that sells . . .
doughnut 2014 donut 1889 that eats the . . .
foetus 1943 fetus 1878 that researches the . . .
flautist 112 flutist 101 that knows the . . .
moustache 1132 mustache 1639 that has a . . .
tumour 7338 tumor 6348 that has a . . .
pyjamas 808 pajamas 1106 that wears . . .
sulphate 3776 sulfate 1143 that sells . . .
yoghurt 1467 yogurt 2070 that eats the . . .
aubergine 765 eggplant 762 that eats the . . .
shopping trolley 217 shopping cart 13366 that uses a . . .
veterinary surgeon 941 veterinarian 6995 that knows the . . .
sailing boat 5097 sailboat 1977 that owns a . . .
football 33125 soccer 6841 that plays . . .
holiday 125430 vacation 23532 that enjoys the . . .
ladybird 235 ladybug 303 that caught a . . .
theatre 19451 theater 13508 that loves . . .
postcode 479 zip code 1392 with the same . . .
whisky 3604 whiskey 4313 that drinks . . .

Table 5.4: Synonyms for the substitutivity test, along with their OPUS frequency, Dutch
translation, and the subordinate clause used to insert them in the data.

translation. Here, we test to what extent models’ translations abide by this principle by
performing the substitutivity test from Hupkes et al. (2020), which measures whether
the outputs remain consistent after synonym substitution.

To find synonyms – source terms that translate into the same target terms – we
exploit the fact that OPUS contains texts both in British and American English.
Therefore, it contains synonymous terms that are spelt differently, such as “doughnut”
and “donut”, and synonymous terms with a very different form, such as “aubergine”
and “eggplant”. We use 20 synonym pairs in total (see Table 5.4).

Test design For each synonym pair, we select natural data from OPUS in which the
terms appear and perform synonym substitutions. Thus, each sample has two sentences,
one using the British English term and one using the American English term. We also
insert the synonyms into the synthetic and semi-natural data using 500 samples per
synonym pair per template, through subordinate clauses that modify a noun – e.g. “the
king that eats the doughnut”. Table 5.4 includes all clauses used.
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(a) All consistency scores
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consistency

m(o)ustache
ladybird / ladybug
holiday / vacation

football / soccer
f(o)etus

fl(a)utist
do(ugh)nut

aubergine / eggplant
alumin(i)um

a(e|i)r(o)plane

0.0 0.25 0.5 0.75 1.0
consistency

yog(h)urt
whisk(e)y

veterinarian / veterinary surgeon
tumo(u)r

theat(re|er)
sul(ph|f)ate

shopping trolley / shopping cart
sail(ing )boat
p(y|a)jamas

postcode / zip code synonym
consistency
consistency

(b) Consistency scores per synonym

Figure 5.4: (a) Consistency scores of synonyms (averaged ◇, and per synonym ○) for
substitutivity per evaluation data type, for three training set sizes. (b) Consistency per
synonym, measured using full sentences (in dark blue) or the synonym’s translation only (in
green), averaged over training dataset sizes and data types.

Evaluation Like systematicity, we evaluate substitutivity using the consistency score,
expressing whether the model translations for a sample are identical. We report
both the full sentence consistency and the consistency of the synonyms’ translations
only, excluding the context. Cases in which the model omits the synonym from both
translations are labelled as consistent if the rest of the translation is the same for both
input sequences.

Results In Figure 5.4a, we summarise all substitutivity consistency scores. We observe
trends similar to the systematicity results: models trained on larger training sets perform
better, and synthetic data yields more consistent translations compared to (semi-)natural
data. We further observe large variations across synonyms, for which we further detail
the performance aggregated across experimental setups in Figure 5.4b. The three lowest
scoring synonyms – “flautist”, “aubergine” and “ladybug” – are among the least frequent
synonyms, which stresses the importance of frequency for the model to pick up on
synonymy.
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In Figure 5.4b, we show both the regular consistency and the consistency of the
synonyms’ translations, illustrating that a substantial part of the inconsistencies are due
to varying translations of the context rather than the synonym itself, underscoring the
models’ non-local processing. We will further elaborate on the types of inconsistencies
observed for both synonyms’ translations and the translation of the contexts in §5.4.

5.3.3 Overgeneralisation

In our final test, we focus on exceptions to compositional rules. In natural language,
typical exceptions that constitute a challenge for local compositionality are idioms. For
instance, the idiom “raining cats and dogs” should be treated non-locally to arrive at
its meaning of heavy rainfall. A locally compositional approach would yield an overly
literal but nonsensical translation (“het regent katten en honden”). When a model’s
translation is too local, we follow Hupkes et al. (2020) in saying that it overgeneralises,
or, in other words, it applies a general rule to an expression that is an exception to this
rule. Overgeneralisation indicates that a language learner has internalised the general
rule (e.g. Penke, 2012).

We select 20 English idioms for which an accurate Dutch translation differs from the
literal translation from the English MAGPIE corpus (Haagsma et al., 2020). Because
acquisition of idioms is dependent on their frequency in the corpus, we use idioms with
at least 200 occurrences in OPUS based on exact matches, for which over 80% of the
target translations do not contain a literal translation.

Test design Per idiom, we collect data from three sources: natural (sentences from
OPUS that represent an exact match with the idiom’s surface form as contained in
MAGPIE), semi-natural and synthetic. For the latter two categories, we insert the
idiom in 500 samples per idiom per template, by attaching a relative clause to nouns
representing a human – e.g. “the king that said ‘I knew the formula by heart’”. The
clauses themselves are drawn from source sentences in OPUS, and can be found in
Table 5.5. In the third column of Table 5.5, we show idiom translations elicited from
the model by embedding the idiom in a string of ten random nouns. Since idioms
only receive their figurative meaning in a supportive context, we expect a literal, local
translation in this scenario. Nearly all idioms are indeed locally translated, which
indicates that the idiom is not memorised as one lexical unit per se, but that it is only
translated non-locally in specific contexts.

Evaluation Per idiom, we assess how often a model overgeneralises and how often it
translates the idiom differently. To do so, we identify keywords that indicate that a
translation is overgeneralised. If the keyword’s literal translation is present, the whole
translation is labelled as an overgeneralised translation. For instance, for “by heart”,
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Idiom Relative clause Local translation

once in a while that said “ I will play it once in a while ” eens in een tijdje
do the right thing that said “ Just do the right thing ” doen het juiste ding
out of your mind that said “ Have you gone out of your mind ” uit je hoofd
state of the art that said “ This is a state of the art, official facility ” stand van de kunst
from scratch that said “ We are cooking from scratch every day ” van kras
take stock that said “ Take stock of the lessons to be drawn ” nemen voorraad
across the board that said “ I got red lights all across the board ” aan boord
in the final analysis that said “ In the final analysis, this is what matters ” in de laatste analyse
out of the blue that said “ It just came out of the blue ” uit het blauwe
in tandem that said “ We will work with them in tandem ” in tandem
by heart that said “ I knew the formula by heart ” door hart
come to terms with that said “ I have come to terms with my evil past ” komen overeen met*
by the same token that said “ By the same token I will oppose what is evil ” bij dezelfde token
at your fingertips that said “ The answer is right at your fingertips ” binnen handbereik*
look the other way that said “ We cannot look the other way either ” kijken de andere manier
follow suit that said “ And many others follow suit ” volgen pak
keep tabs on that said “ I keep tabs on you ” houden tabs
in the short run that said “ In the short run it clearly must be ” in de korte lopen
by dint of that said “ We are part of it by dint of our commitment ” door de int
set eyes on that said “ I wish I had never set eyes on him ” set ogen op

Table 5.5: Idioms used in the overgeneralisation test, with the underlined words being
indicative of a local translation. The relative clauses are used to insert idioms into synthetic
and semi-natural templates. The local translation indicated is the translation given by the
model when the idiom is embedded in a string of ten random words. * marks examples
translated non-locally, and words that appear (partially) untranslated are italicised.

the presence of “hart” (“heart”) suggests a literal translation. An adequate paraphrase
would say “uit het hoofd” (“from the head”). In Table 5.5, the keywords selected are
underlined. We evaluate the overgeneralisation tendency as the fraction of inputs for
which the translation contains the literal translation of the keyword, for ten checkpoints
between the start of training and one of the last checkpoints the five seeds had in
common before converging based on the development test’s BLEU scores (epoch 160,
50 and 30 for the small, medium and full training set sizes, respectively).

Results In Figure 5.5, we report the results. For all evaluation data types and all
training set sizes, phases can be identified. Initially, the translations do not contain the
idiom’s keyword, not because the idiom’s meaning is paraphrased in the translation,
but because the translations consist of high-frequency words in the target language only.
Very early on, for instance, during epoch one for the small and medium training set
sizes, these are just strings of repeated words like “de” (“the”). Slightly later during
training, the models will start to produce simple sentences that wrongly translate the
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(a) Synthetic evaluation data
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(c) Natural evaluation data

Figure 5.5: Visualisation of overgeneralisation for idioms throughout training, with a line
per idiom and the overall mean. Overgeneralisation occurs early on in training and precedes
memorisation of idioms’ translations. The colours indicate different training dataset sizes.

idiom or omit it – e.g. during epoch six when training on the medium training set size
“Once in a while, a student surprises you” is translated as “Als je een student bent”
(“If you are a student”), which is completely inaccurate and omits the idiom, but does
contain some words from the source sentence. Afterwards, overgeneralisation peaks,
when the models emit very literal, word-for-word translations of the idioms – e.g. when
trained on the full corpus, the model translates “In the short run, it clearly must be” in
epoch two as “In de korte loop moet het duidelijk zijn” (“In the short run it should be
clear”), translating “run” literally as “walk”. Finally, the model starts to memorise the
idioms’ atypical translations, as signalled by the absence of the literal translations of the
keywords we marked. This is in accordance with overgeneralisation results on synthetic
data (Korrel et al., 2019; Hupkes et al., 2020), and earlier results presented in a debate
regarding human acquisition of irregularities of the past tense of verbs (Rumelhart and
McClelland, 1986, i.a.). It also agrees with analyses of the different training stages of
NMT systems presented by Voita et al. (2021), who identify that models first learn
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target-side language modelling (leading models to hallucinate frequent tokens), then
move on to producing word-for-word translations and end with a final stage in which
words in the translation are reordered, yielding more fluent translations.

If we now inspect the results for the different evaluation data types, we observe
more overgeneralisation for synthetic and semi-natural data compared to natural data,
suggesting the context in which an idiom is embedded somewhat influences how it is
translated. At the same time, there are many idioms for which the natural contexts
barely appear to matter, since for only 6, 10 and 8 idioms (for the full, medium and
small training corpus, respectively) it holds that the semi-natural data is overgeneralised
at least 10 percentage points more compared to the natural data at the end of training.
Note that we embedded the idiom in the synthetic and semi-natural data using templates,
constantly repeating the exact same idiomatic clause. Taking that into account, the
similarity in the results between the natural data and the other two evaluation data
types could signal inadequate disambiguation skills in addition to a lack of memorisation
of non-local translations.

When analysing the results for the different training set sizes, overgeneralisation is
more prominent in converged models trained on smaller datasets than in models trained
on the full corpus. For the natural evaluation data, more than 5%, 25% and 50% of
the examples are overgeneralised at the final checkpoint evaluated for the full, medium
and small training set sizes, respectively, suggesting that the models trained on the
medium and small data, in particular, are too compositional close to convergence. This
provides an interesting contrast to the results from our substitutivity and systematicity
results, where we observed processing that was not as locally compositional as expected.
In the smaller training sets, the absolute frequency of the idioms changed. Still, the
relative frequency was preserved, which could indicate that either absolute frequency
or diversity of contexts in which idioms are observed influences models’ tendency to
memorise. Future work would have to investigate the training dynamics of idioms
further to consolidate which factors are the main drivers of idiom memorisation here.

Going further: training dynamics across tests Finally, we would like to know to what
extent idiom memorisation (mis)aligns with other performance indicators we measured.
Figure 5.6 displays BLEU scores, consistency scores for systematicity (S → S CONJ S)
and substitutivity, and overgeneralisation scores, using the natural data for one model
seed.3 Substitutivity consistency scores show increases prior to dropping as soon as the
BLEU scores increase, due to highly consistent (but inaccurate) translations during
the early epochs, when synonyms are simply omitted from the translation and the

3These models are reproduced following the publication of this chapter, due to a lack of access to all
intermediate checkpoints of the main results we discussed. We provide the technical setup used for the
reproduction in Appendix C.2.
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Figure 5.6: Demonstration of how overgeneralisation aligns with BLEU scores, and system-
aticity and substitutivity results, per training corpus size.

model produces input-agnostic translations.4 As soon as the BLEU scores increase, the
other metrics do too, with overgeneralisation peaking while the other metrics are still
improving.

Relatively speaking, overgeneralisation changes the most when the other metrics
are starting to converge, making it likely that this metric would benefit the most from
continued training. The model trained on the full corpus is the only one that has fully
stopped overgeneralising the translations of idioms. However, it should be taken into
account that we purposefully selected the idioms to be frequent (appearing at least 200
times in the full corpus), and that memorisation may not have been as successful for
less frequent idioms. In chapter 6 we will return to NMT systems’ tendency to translate
idioms overly literally, which is very prominent when examining a much wider range
of idioms. Yet, also for the ‘full’ model, the overgeneralisation tendency still rapidly
changes between, e.g., epochs 6 and 20, while much smaller changes occur for the BLEU
scores. That BLEU scores do not always align well with other performance metrics
has previously been reported – e.g. by Voita et al. (2019b) for contextual adequacy of
translations in context-aware NMT, by Savoldi et al. (2022) for feminine grammatical
gender markings, and by Stadler et al. (2021) for a wide range of linguistic phenomena.

We finally note that for the ‘full’ training set, the systematicity consistency peaks
very early (epoch 6) and then slightly, but steadily, decreases. This score reflects the
model’s behaviour in the S → S CONJ S test and thus evaluates the consistency of a
conjunct’s translation following a modification of the other conjunct, reflecting local
changes in the translation following a global modification to the input. Potentially,
the abilities that underlie adequately translating global phenomena (such as idioms, or
source-side phrases that require a lot of reordering in the target translation) are at odds
with locally translating such conjuncts, demonstrating, again, a paradox between local
and global processing. Local processing is desirable from a robustness point of view,

4Systematicity does not necessarily show the same pattern because the conjuncts cannot be reliably
separated for S → S CONJ S during the early epochs.
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but global processing can be needed for fluent, natural translations. We will return to
this paradox in the discussion (§5.5).

5.4 Manual analysis

Our systematicity and substitutivity results demonstrate that models are not behaving
compositional according to a strict definition of compositionality. However, we ourselves
have argued that strict compositionality is not always appropriate to handle natural
language. A reasonable question to ask is thus: are the inconsistencies we marked as
non-compositional actually incorrect?

Annotation setup To address this question, we perform a manual analysis. We
annotate 1800 inconsistent translation pairs from the systematicity and substitutivity
tests to establish whether the inconsistencies are benign or concerning. For systematicity,
we use 50 examples per model-data type combination for the S′1 and S3 conditions of
the S → S CONJ S test. For substitutivity, we use 100 examples per model-data
type combination, with equal representation of synonyms. We consider four types of
inconsistencies:

1. cases of rephrasing, where both translations are equally (in)correct;
2. changes reflecting different interpretations of source ambiguities;
3. cases in which one of the two translations contains an error ;
4. formatting (mostly punctuation) changes.

For substitutivity samples, we also annotate whether the changes are related to the
translation of the synonym, where we distinguish cases where

i. one of the synonym translations is incorrect;
ii. both are incorrect but in a different manner;
iii. both are correct but translated differently;
iv. one synonym remains untranslated.

We annotate all changes observed per pair and report the relative frequency per class.

Results In the systematicity test, 40% of the inconsistencies reflect errors, whereas
38% contain examples of rephrasing, 16% reflect ambiguities in the source sentences
and 6% are caused by formatting differences. The distribution of these types differs
strongly per training corpus size; for models trained on fewer datapoints, inconsistencies
are more likely to represent errors, whereas models trained on more data rephrase more
often. For a breakdown per training corpus size and evaluation data type, and a more
elaborate discussion of the results of the analysis, we refer to Appendix C.3.

Some target errors can be traced to individual words (e.g. because words are missing,
wrongly translated or untranslated), while others reflect broader misinterpretations, such
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Figure 5.7: Relative frequencies of manually labelled inconsistencies in translations, averaged
over data types and training set sizes. The ‘synonyms’ distribution further details the
category ‘synonyms’ from row two.

as a change in subject-verb agreement displayed in Example (1). Here, “understands”
(“begrijpt”) should agree with “painter” (“schilder”) but instead agrees with the word
“doctors”, much earlier in the sentence. A more locally compositional approach to
translating would have yielded the correct translation.

(1) s En: The doctors that laugh admire the {president, baker}, and the painter that
admires her understands the king.

t1 Nl: (. . . ) de schilder die haar bewondert, begrijpen de koning.
t2 Nl: (. . . ) de schilder die haar bewondert begrijpt de koning.

Among the inconsistent translations due to ambiguities were also cases where our
sentence conjunction was unintentionally ambiguous, if the verb of the first conjunct
could take scope over the second conjunct – e.g. in “The friend wishes that the {lawyers,
directors} scream, and the victims (. . . )”. In Dutch, the unintended reading triggers
SOV word order in the second conjunct, yielding inconsistent translations if the model
switches its interpretation following our input perturbation. Such scope shifts often
result in questionable interpretations, and models sometimes change the word order in
the second conjunct even when a scope change is impossible.

In addition to pointing out errors, it should be noted that many inconsistencies
appear benign, particularly for the ‘rephrasing’ category. A common type of rephrasing
is a change in word ordering that does not affect the grammaticality or meaning of the
Dutch sentence – e.g. for sentences with adverbs that can appear in various positions. We
could not link these reorderings to the input perturbations we made in the systematicity
test. See, for instance, Example (2), where reordering occurs after changing “king” to
“father”.5 Yet, even benign rephrasings might be undesirable from a robustness and
reliability perspective.

(2) s En: The aunts criticise the {king, father}, and the man definitely observes the
5Even though these translations both contain an error (“neemt . . . in de gaten”), this is not marked

as an inconsistency, because it is shared between the translations.
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mayor.
t1 Nl: (. . . ) en de man neemt zeker de burgemeester in de gaten.
t2 Nl: (. . . ) en de man neemt de burgemeester zeker in de gaten.

For substitutivity, most inconsistencies are similar to the ones observed in system-
aticity: only 24% of the inconsistencies involve the synonyms’ translations, where one
of the synonyms being untranslated was the most frequent. The inconsistencies can
be quite peculiar, e.g. in case of “donut” being translated as “ezel” (“donkey”), or the
global change in the following example:

(3) s En: - Yeah, a barbecue sauce {moustache, mustache} contest.
t1 Nl: - Ja, een barbecue met snor. (missing ‘sauce’ and ‘contest’)
t2 Nl: - Ja, een barbeceu saus snor wedstrijd.

How frequently each of the four subtypes of synonym inconsistencies occurs depends
on the synonym. Where some synonyms are more prone to being untranslated (like
“ladybird” and “flautist”), some simply received many different correct translations
(like “shopping trolley”), and others received errors very specific to the synonym (like
“eggplant” being translated as “egg”+“plant”, an interesting case because it reflects
processing that is too local). It should be noted that for all synonyms6 we have observed
correct translations, indicating that the models did in fact acquire their meaning. The
majority of the substitutivity inconsistencies observed did not appear to be related to
the synonyms themselves, and the types of rephrasings also did not reflect the writing
style of the sentence. Considering that the synonym changes were related to British
and American spelling, and may have changed the tone of the sentence (e.g. “aeroplane”
could be considered more archaic compared to “airplane”), one could anticipate changes
in word choice in Dutch reflecting this change of style. However, the substitutivity
inconsistencies were virtually indistinguishable from those annotated for systematicity.

5.5 Conclusion and discussion

Whether neural networks can generalise compositionally is often studied using artificial
tasks that assume strictly local interpretations of compositionality. We argued that
such interpretations exclude large parts of language and that to move towards human-
like productive usage of language, tests are needed that assess how compositional
models trained on natural data are.7 We laid out reformulations of three compositional
generalisation tests – systematicity, substitutivity and overgeneralisation – for NMT
models trained on natural corpora, and assessed models trained on different amounts

6Apart from the model with the small training dataset that cannot translate “flautist” and “ladybug”.
7Dupoux (2018) makes a similar point for models of language acquisition, providing several concrete

examples where using less than fully complex data proved problematic.
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of data. Our work provides an empirical contribution but also highlights vital hurdles
to overcome when considering what it means for models of natural language to be
compositional. Below, we reflect on these hurdles and our results.

The proxy-to-meaning problem Compositionality is a property of the mapping between
the form and meaning of an expression. Since translation is a meaning-preserving
mapping from form in one language to form in another, it is an attractive task to
evaluate compositionality (as we previously reviewed in §2.3.1), since the translation
of a sentence can be seen as a proxy to its meaning. However, while expressions are
assumed to have only one meaning, translation is a many-to-many mapping. The same
sentence can have multiple correct translations, and the translation is only a proxy
to the meaning, not the meaning itself. This not only complicates evaluation – MT
systems are typically evaluated with BLEU because accuracy is not a suitable option –
it also raises questions about how compositional the desired behaviour of an MT model
should be. On the one hand, one could argue that for optimal generalisation, robustness,
and accountability, we like models to behave systematically and consistently; it would
make them more robust with regards to, for example, adversarial attacks based on input
perturbations (e.g. Cheng et al., 2019; Zhang et al., 2021). We expect the translations
of expressions to be independent of unrelated contextual changes that do not affect their
meaning (e.g. swapping out a synonym). Additionally, model performance could be
improved if small changes do not introduce errors in unrelated parts of the translation.
On the other hand, non-compositional behaviour is not always incorrect – it is one of
the main arguments in our plea to test compositionality ‘in the wild’ – and we observe
that indeed, not all non-compositional changes alter the correctness of the resulting
translations. Changing a translation from “atleet” (“athlete”) to “sporter” (“sportsman”)
based on an unrelated word somewhat far away may not be (locally) compositional, but
is it a problem? And how do we separate harmful mistakes from helpful or benign ones?

The locality problem Inextricably linked to the proxy-to-meaning problem is the
locality problem. In our tests, we see that small, local source changes elicit global
changes in translations. For instance, in our systematicity tests, changing one noun in a
sentence elicited changes in the translation of a sentence that it was conjoined with. In
our substitutivity test, even synonyms that merely differed in spelling (e.g. “doughnut”
and “donut”) elicited changes to the remainder of the sentence. This counters the
idea of compositionality as a means of productively reusing language: if a phrase’s
translation depends on (unrelated) context that is not in its direct vicinity, this suggests
that more evidence is required to acquire the translation of this phrase. At the same,
our overgeneralisation experiments using idioms demonstrated a use case in which more
global changes following a local modification are actually desirable: when comparing a
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phrase like “state of the world” to “state of the art”, a single token difference implies that
multiple tokens should change in the translation. Moreover, when working with natural
data, not all occurrences of idioms are assumed to be idiomatic; occasionally, “state of
the art” is used literally (e.g. in “The teacher judged the state of the art her students
had created during the pottery workshop”) in which case more evidence than just the
phrase itself should be used to arrive at the right translation. This underscores the fact
that, depending on the context, either local or global behaviour may be preferable.

Tests involving synthetic data present the models with sentences in which maximally
local behaviour is possible, and we argue that it is, therefore, also desirable. Our
experiments show that even in such setups, models do not translate in a local fashion:
with varying degrees of correctness, they frequently change their translation when we
slightly adapt the input. On the one hand, this well-known volatility (see also Fadaee
and Monz, 2020) might be essential for coping with ambiguities for which meanings are
context-dependent. On the other hand, our manual analysis shows that the observed
non-compositional behaviour does not reflect the incorporation of necessary contextual
information and that oftentimes it is even altering the correctness of the translations.
Furthermore, this erratic behaviour highlights a lack of default reasoning, which can, in
some cases, be problematic or even harmful, especially if faithfulness (Parthasarathi
et al., 2021) or consistency is important.

In linguistics, it has been discussed how to extend the syntax and semantics such
that ‘problem cases’ can be a part of a compositional language (e.g. Westerståhl, 2002;
Pagin and Westerståhl, 2010b). In such formalisations, global information is used to
disambiguate the problem cases, while other parts of the language are still treated locally.
In our models, global behaviour appears in situations where a local treatment would be
perfectly suitable and where there is no clear evidence for ambiguity. At the same time,
local behaviour occurs at the phrase-level when idioms are overgeneralised, or even
at the word-level in the case of “eggplant” being translated as “egg plant”. We follow
Baggio (2021) in suggesting that we should learn from strategies employed by humans,
who can assign compositional interpretations to expressions but can, for some inputs,
also derive non-compositional meanings. For human-like linguistic generalisation, it is
vital to investigate how models can represent both these types of processing, providing
a locally compositional treatment when possible and deviating from that when needed.

Conclusion In conclusion, with this work, we contribute to the question of how
compositional models trained on natural data are, and we argue that MT is a suitable
and relevant testing ground to ask this question. Focusing on the balance between local
and global forms of compositionality, we formulate three different tests and discuss the
issues and considerations that come up when studying compositionality in the context
of natural data. Our tests indicate that models show both local and global processing,
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but not necessarily for the right samples, and that local and global processing emerge
at different rates during training. Furthermore, our tests underscore the difficulty of
separating helpful and harmful types of non-compositionality, stressing the need to
rethink the evaluation of compositionality using natural language, where composing
meaning is not as straightforward as in synthetic datasets that treat language like
arithmetic.

5.5.1 Limitations

We identify four main limitations of our work. Firstly, while the majority of the work
we introduced in §2.3.2 focuses on evaluating models with an explicit distribution shift
between the training and test data – systematically introducing new token combinations,
syntactic structures or sentence lengths in the test set – constructing an explicit
distribution shift is not the main focus of our work. Although we partially
evaluate with data the models have not seen before, we also conduct evaluations using
phrases and sentences from the training corpus (in case of the semi-natural and natural
evaluation subsets). We do combine those phrases and sentences with new material
(e.g. through a conjunction operation for systematicity, or changing a synonym for
substitutivity), which one could argue makes the evaluations OOD.

A second limitation is that, although we urge others to rethink the evaluation of
compositionality for natural language, we do adopt partially synthetic datasets in
our evaluations, because they are easier to manipulate in a controlled manner. Ideally,
we would move towards scenarios where both the training and the evaluation data
are fully natural. Models trained with natural data might behave differently when
evaluated with synthetic data than with natural data. Moreover, our synthetic data
yields constructions that are, on occasion, semantically or grammatically odd, which
could, again, lead to non-standard behaviour from the models.

Thirdly, our experimental setup is inherently limited by focusing on one architec-
ture (transformer-base, Vaswani et al., 2017), one language pair, three types of
tests and one task. Compositionality is a multi-faceted phenomenon, and how to
evaluate whether models truly generalise compositionally is not easily captured in a few
tests. Other evaluations to consider could study generalisation of primitives to larger
contexts (e.g. Lake and Baroni, 2018), generalisation to new syntactic constructions (e.g.
Kim and Linzen, 2020) or generalisation based on corpus-level distribution shift metrics
(e.g. Keysers et al., 2019). Similarly, the non-compositional aspects of natural language
extend beyond the idioms assessed in our overgeneralisation test, and further evaluations
could have been performed, e.g. using proverbs or non-compositional compounds, as we
did in §3.4. We chose transformer-base as it has been the predominant architecture
used in open-source pretrained translation systems since transformer’s introduction
in 2017, and adopted one language pair due to the intricacies involved with both
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producing the data and accurately evaluating the results. In the evaluation, we had
to account for language-specific properties such as not penalising determiner changes
following noun modifications on the source side, and carefully selecting keywords in
the overgeneralisation test, for which the knowledge of native speakers is crucial.8 Our
analyses focused exclusively on the task of NMT, but because human translations can
demonstrate wide variability – making MT a many-to-many problem – one could argue
that robustness and consistency are even more important in other tasks, e.g. for hate
speech detection or code generation. We chose to evaluate compositional generalisation
within NMT, because compositionality is traditionally well-studied and -motivated
for MT, and because MT corpora represent the richness of natural language when it
comes to the compositionality continuum. We do not necessarily suggest that MT
should become the de facto standard for compositional generalisation evaluation, and
encourage explorations similar to ours for other tasks, but would like to underscore that
natural language should receive more attention in the discourse around compositional
generalisation.

Lastly, while we pointed out that transformer can be too compositional (when
overgeneralising idioms) and not compositional enough at the same time (for the
substitutivity and systematicity tests), we did not offer solutions to mitigate this.
However, we can point out modifications to explore based on our results. Firstly, since
corpus size has a clear impact on consistency scores, data augmentation techniques will
likely provide additional improvements in score. Secondly, we noticed that perturbing
an input token in one conjunct can affect the translation of a token in the other conjunct.
This could be due to the fact that vanilla transformers’ self-attention blocks include
a softmax over all input tokens. Architectural changes, such as sparse attention (e.g.
Correia et al., 2019), could partially alleviate the over-reliance on irrelevant context.
Thirdly, that models are too compositional and not compositional enough all at once
might be because we require all inputs to be processed by the same model weights.
More experimental approaches to balancing compositional generalisation and non-
compositional memorisation could tailor architectures for this, e.g. by introducing
Mixture-of-Experts layers (Shazeer et al., 2017) and biasing routing for sentences for
which we know a non-compositional phrase is present. In the next subsection, we will
elaborate on others who built upon our findings to mitigate some of the models’ issues
we pointed out, and in chapter 6 we will point out methods that have been proposed to
improve models’ translations for idioms.

8Two of the authors of Dankers et al. (2022a) are native speakers of Dutch.
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5.5.2 Retrospective and outlook

Following the publication of this chapter, many new modelling techniques to improve
compositional generalisation have been published. Two of these techniques are particu-
larly related to the issues we pointed out regarding the inconsistency of translations in
our substitutivity and systematicity tests:

• On consistency regularisation: Yin et al. (2023) introduce two regularisation
objectives applied during the training of sequence-to-sequence models. The first
promotes consistency of token representations across contexts via a contrastive
loss based on cosine similarity. The second enforces similarity between output
distributions when the same input is passed through the model under different
dropout perturbations, using a Jensen-Shannon divergence loss. These auxiliary
loss functions not only improve consistency in our substitutivity and systematicity
tests, but also yield improvements in test set BLEU scores and enhance performance
on a separate translation dataset (Li et al., 2021a) as well as two compositional
generalisation semantic parsing datasets (Kim and Linzen, 2020; Keysers et al.,
2019).

• On regularising through joint dropout: Niculae and Monz (2023) propose
the joint dropout technique that replaces aligned phrase pairs in the source and
target sentences with variables, while encouraging models to keep the translation
of the remaining text the same. Joint dropout improves the consistency on our
systematicity test, as well as BLEU scores, robustness scores and cross-domain
generalisation on other datasets, particularly for low-resource languages.

These findings underscore that the inconsistencies we observed are not specific to our
setup but more broadly undermine models’ compositional abilities, and that reducing
models’ volatility improves robustness and generalisation. It should also be mentioned,
however, that the same volatility and over-reliance on context can serve beneficial
purposes in natural language translations, as pointed out by Sharma et al. (2022), who
introduce context to reduce gender bias in NMT systems. This apparent paradox of
volatility and over-reliance on context being both harmful and beneficial makes one
question what it is we desire most for machine-translated text, particularly in an era
in which more and more LLMs are used for NMT, and translations are more often
sampled rather than being computed with beam search. Perhaps the inconsistencies we
penalised models for in our work are completely unavoidable and unproblematic in such
scenarios, and simply demonstrate a human-like creative ability to paraphrase? Perhaps,
but only if it concerns benign rephrasings. If inconsistencies introduce errors, being
consistent seems more desirable than being creative. The fact that inconsistencies were
less often benign for our smaller training sets, and the fact that Niculae and Monz’s
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regularisation also improves cross-domain generalisation, demonstrate the relevance of
consistency when the training data is not fully representative of the data distribution
we are interested in generalising towards. As such, it seems impossible to definitively
answer whether consistency is always an optimal translation strategy for LLMs. This is
simply dependent on the circumstances and application involved.

In addition to new modelling techniques being proposed following this chapter’s
publication, new datasets have appeared. We redefined three tests proposed by Hupkes
et al. (2020) for the scenario of NMT systems trained on natural language, and Liu (2022)
directly adopted our systematicity tests and constructed evaluation data accordingly
for English-Tamil, English-Gujarati and English-German translation. Two other related
articles by Li et al. (2024a) and Liao et al. (2023) adopt our tests but redefine them
for the task of visual question-answering using natural language. Li et al. improve
substitutivity capabilities of vision models by performing synonym replacements of both
words and objects in the images in training examples. Liao et al. create evaluation sets
for the notions of systematicity (by combining concepts previously not seen together
in test images), substitutivity (by evaluating that an object remains the same when
combined with different attributes such as different colours) and non-compositional
testing (by combining objects in images that are usually not composed, such as ‘door’
and ‘shirt’).

Other MT datasets for compositional generalisation that go beyond the tests we
examined were presented by Kumon et al. (2024) and Moisio et al. (2023). Kumon et al.
noted that most evaluations focused on lexical generalisation (i.e. presenting words
in new contexts in the evaluation data) and, therefore, present an English-Japanese
dataset for structural generalisation (i.e. presenting new syntactic constructions in the
evaluation data). Instead of singling out specific tokens or syntactic constructions that
are novel during evaluation, Moisio et al. take a distribution-based approach by creating
data splits for four language pairs by maximising the compound divergence as defined
by Keysers et al. (2019).

Our work did not merely mean to point out NMT systems’ inadequacies when it comes
to compositional generalisation or idiom memorisation, but also presented a call to action:
as a community, we should rethink how we evaluate compositional generalisation, and
we cannot keep removing natural language variation to make evaluation more convenient.
This call has been heard and is often explicitly mentioned in articles building upon our
work (e.g. Zheng and Lapata, 2023; Sun et al., 2023; Chia, 2024; Chia et al., 2024; Fodor
et al., 2025). Not only has there been increased attention for natural language’s variable
nature in compositional generalisation literature, graded notions of compositionality
have also been studied more widely for LMs. Liu and Neubig (2022) measured to what
extent LMs’ hidden representations of a sequence are compositions of representations
of subphrases. Although the mapping between subphrases and parent phrases could
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be accurately described with a compositional function, the compositionality scores of
representations did not align with human compositionality judgements. This could
suggest that the scores inadequately capture non-compositional meaning combinations.
In Dankers and Titov (2022) and Dankers and Lucas (2023)9 my co-authors and I
quantified compositionality in the context of sentiment analysis using graded metrics for
models’ hidden representations and human compositionality judgements, respectively.
We demonstrated that the more non-compositional an example is, the more challenging
it is for LMs to predict the sentiment accurately. Although we acknowledged that
compositionality exists along a continuum in natural language (§2.3), compositional
generalisation evaluation at present fails to address that full, graded continuum. I
encourage future work to expand the scope of (non-)compositional generalisation tests,
instead of studying compositionality or non-compositionality in isolation.

9I was the first author of these articles, but they are not a part of this thesis.



Chapter 6

The mechanisms behind idiom
processing

6.1 Introduction

Now that we have been introduced to models’ struggles to balance compositional
generalisation with non-compositional processing, and have learnt idiom acquisition to
be a two-step process in NMT, we zoom in on idiomatic expressions. They have been a
pain in the neck of NLP researchers for as long as the field has existed (e.g. Sag et al.,
2002; Rayson et al., 2010; Shwartz and Dagan, 2019) but have been problematic for
NMT systems, in particular (e.g. Barreiro et al., 2013; Isabelle et al., 2017; Constant
et al., 2017; Avramidis et al., 2019). Idioms such as “kick the bucket” occur much
less frequently than their parts (i.e. “kick”, “the”, and “bucket”), and they require
disambiguation before translation. After all, not all potentially idiomatic expressions
(PIEs) are figurative – e.g. consider “When I kicked the bucket, it fell over” – so whether
PIEs should receive a figurative or literal translation depends on the context.1 Not only
do NMT systems need to acquire those disambiguation skills, they also need to memorise
adequate translations for idioms, and to translate an individual idiom correctly, NMT
systems need to be exposed to a sufficient number of example translations. For widely
used NMT corpora, it is unknown to what extent they include sufficient training material
to learn idioms, and NMT corpora dedicated to idiom learning are rare (Fadaee et al.,
2018).

Although it is known that idioms pose a challenge to NMT systems, little is known
about the neural mechanisms enabling idiomatic translations and methods for improving
them. Related work on neural mechanisms for idiom processing that appeared prior
to the work this chapter is based on mainly studied how idioms are represented by

1Up until now, we have simply spoken of ‘idioms’, but since this chapter discusses both literal and
figurative occurrences, we will primarily refer to them as PIEs.
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Figure 6.1: How do attention patterns of figurative PIEs that are paraphrased by the model
compare to attention patterns of literal PIEs that are translated word for word? We find
(1) decreased interaction between the PIE and its context, (2) increased attention within
the PIE, (3) decreased cross-attention between the PIE and its paraphrase, (4) increased
cross-attention from the paraphrase to the EOS token (</s>).

transformer-based LMs (e.g. García et al., 2021a,b), but LMs are not required to output
a discrete representation of the idiom’s meaning, which is a complicating factor for
NMT models. We previously reviewed related work in this direction in §2.3.3, along
with background information on the non-compositional nature of idioms and what is
known about how humans process idioms (§2.3.1).

In this chapter, we analyse idiom processing for pretrained NMT transformer models
(Vaswani et al., 2017) for seven Indo-European language pairs by comparing literal and
figurative occurrences of PIEs. We focus on figurative PIEs that the model paraphrases,
in particular, because those signal that the models have memorised to produce non-
compositional translations. By doing so, we contribute to answering RQ2: “Which
model-internal mechanisms enable memorisation?” Throughout this chapter, we address
the following sub-questions:

1. How can we perform analyses of NMT idiom processing at scale? Large-scale
analyses of idiom translations suffer from a lack of parallel corpora (Fadaee et al.,
2018). We, therefore, use a monolingual corpus, heuristically label transformer’s
translations, and verify the heuristic works as intended through human evaluation,
as described in §6.2.

2. How does idiomaticity and the paraphrasing of non-compositional idioms affect
attention patterns and hidden representations? To understand how idioms are
represented in transformer, we apply interpretability techniques to contrast the
effect of literal and figurative PIEs on the encoder’s self-attention and the decoder’s
cross-attention (§6.3), and the encoder’s hidden representations (§6.4 and §6.5).
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3. How do encoder-internal interventions affect non-compositional translations?
Finally, in §6.5, we intervene in the encoding of the English PIEs to show that
one can change non-compositional translations into compositional ones, and we
comment on how this affects the attention patterns.

After elaborating on our experimental results, we end the chapter with a discussion of
our findings (§6.6), commenting on the limitations of our approach and relevant work that
appeared after the publication of this chapter. Overall, we find that transformer NMT
systems typically translate idioms in a manner that is too compositional, providing
word-for-word translations, signalling a lack of memorisation. The analyses of the
attention patterns and hidden representations point to the encoder as the mechanism
that groups words within figurative PIEs. The grouping manifests through increased
attention within the PIE and reduced attention to the context. When translating
figurative PIEs, the decoder relies less on the encoder’s output than for literal PIEs,
directing more attention to the EOS token. These patterns are stronger for figurative
PIEs that the model paraphrases than for word-for-word PIE translations and hold
across the seven language pairs. Figure 6.1 visually summarises these findings.

6.2 Experimental setup and heuristic annotation method

We use pretrained transformer NMT models (Vaswani et al., 2017) with English as the
source language and one of seven languages as the target language (Dutch, German,
Swedish, Danish, French, Italian, Spanish).2 The models are transformer-base models,
containing encoders and decoders with six layers each. The models are pretrained by
Tiedemann and Thottingal (2020) with the Marian-MT framework (Junczys-Dowmunt
et al., 2018) on a collection of corpora (OPUS) (Tiedemann and Thottingal, 2020). We
extract hidden states and attention patterns for sentences with PIEs. The analyses
presented are detailed for Dutch, after which we explain how the results for the other
languages compare to Dutch.3

Parallel PIE corpora are rare, exist for a handful of languages only, and are limited
in size (Fadaee et al., 2018). Rather than rely on a small parallel corpus, we use the
largest corpus of English PIEs at the time of the publication of this chapter and annotate
the translations heuristically. This section provides corpus statistics and discusses the
heuristic annotation method.

MAGPIE corpus The MAGPIE corpus presented by Haagsma et al. (2020) contains
1756 English idioms from the Oxford Dictionary of English with 57k examples of PIEs

2Consistent with chapter 3, our figures refer to these languages using their ISO 639-1 codes, that are
nl, de, sv, da, fr, it and es, respectively.

3We provide more details on the models, the data and the technical setup in Appendix D.1.
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occurring in different contexts, including both figurative and literal contexts. Consider,
for instance, the following four examples:

• “(...) go home, you bum, go home,’ sang another to the tune of Auld Lang Syne.”
• “(...) Froggy was richer than we all imagined: to the tune of five thousand pounds.”
• “(...) their samples under the microscope, stained to pick up particles of iron (...)”
• “Indeed, one issue that has come under the microscope is Thatcher’s reforms (...)”

MAGPIE contains identical PIE matches and morphological and syntactic variants,
through the inclusion of common modifications of PIEs, such as passivisation (“the beans
are spilled”) and determiner changes (“spill some beans”). We use 37k samples annotated
as fully figurative or literal, for 1482 idioms that contain nouns, numerals or adjectives
that are colours (which we refer to as keywords). Because idioms show syntactic and
morphological variability, we will mostly rely on noun translations to heuristically label
models’ translations (as detailed below) and to analyse models’ behaviour. Verbs and
their translations are harder to identify due to the variability. Moreover, idiom indexes
are also typically organised based on the nominal constituents (e.g. Piirainen, 2012).
Although MAGPIE includes examples of PIEs within context windows of five sentences,
we will only present the PIE and its sentential context to the models. We distinguish
between PIEs and their context using the corpus’s word-level annotations.

Heuristic annotation method The MAGPIE sentences are translated by the models
with beam search and a beam size of five. The translations are labelled heuristically. In
the presence of a literal translation of at least one of the idiom’s keywords, the entire
translation is labelled as a word-for-word translation, where the literal translations of
keywords are extracted from the model and Google Translate, yielding a set of possible
translations. When a literally translated keyword is not present, it is considered a
paraphrase.4 We used a similar annotation method in chapter 5 for 20 English idioms,
and Shao et al. (2018) previously analysed NMT translations of 50 Chinese idioms using
a similar method, using manually curated lists of literal translations of idioms’ words to
detect literal translation errors.

Table 6.1 summarises the distribution of these categories for all languages, for
the subsets of figurative and literal examples from MAGPIE. Generally, paraphrased
translations of figurative PIEs are more appropriate than word-for-word translations,
whereas literal PIEs can be translated word for word (Baker et al., 1992). The vast
majority of literal PIEs indeed result in word-for-word translations. The subset of
figurative samples results in more paraphrases, but word-for-word translations dominate
with ≥ 76%. Although the statistics are similar across languages, there are differences in

4The annotation does not evaluate whether paraphrases are correct, which requires expert idiom
knowledge in both languages. A paraphrase being provided is a first step to adequately translating
idioms and, at present, the only way to detect how the model approaches the task for large datasets.
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Category nl de sv da fr it es

Figurative, paraphrase 20 20 24 18 19 20 24
Figurative, word for word 80 80 76 82 81 80 76

Literal, paraphrase 5 6 8 5 7 9 7
Literal, word for word 95 94 92 95 93 91 93

Table 6.1: Distribution of the heuristically assigned labels for translations of MAGPIE
sentences in percentages, expressed within the categories of figurative and literal.

Category # nl de sv da fr it es

Figurative, paraphrase 116 88 84 75 81 78 78 87
Figurative, word for word 103 95 92 95 74 96 97 82

Literal, paraphrase 28 54 71 43 82 43 32 50
Literal, word for word 103 98 89 97 89 98 100 94

Table 6.2: Survey statistics: the number of sentence pairs used (#), and the percentage of
labels for which the annotator and the algorithm agreed per language.

which examples are paraphrased. Figure 6.2 illustrates the agreement by computing the
F1-score when using the predictions for figurative instances of one language as the target,
and comparing them to predictions from another language. The agreement positively
correlates with genetic similarity as computed using the Uriel database (Littell et al.,
2017) (Pearson’s r=0.61, p < 0.005).

To assess the quality of the heuristic method, one (near) native speaker per target
language annotated 350 samples, where they were instructed to focus on one PIE
keyword in the English sentence. Annotators were asked whether (1) the English word
was present in the translation (initially referred to as ‘copy’), (2) whether there was
a literal translation for the word, or (3) whether neither of those options was suited,
referred to as the ‘paraphrase’.5 Due to the presence of cognates in the ‘copy’ category,
that category was merged with the ‘word for word’ category after the annotation.
Table 6.2 summarises the accuracies obtained; the heuristic and human annotations
have a Cohen’s κ of 0.703±0.05. Of particular interest are examples that are figurative
and paraphrased, since they represent non-compositional translations, and examples
that are literal and translated word for word, since they represent the compositional
translations for non-idiomatic PIEs. These categories have annotation accuracies of

5Annotators were not involved in the research. Except for Swedish, annotators were native in the
target language only. Note that the data annotation study is aimed at assessing the accuracy of the
heuristic, and not at fully evaluating the idiomatic translations, for which annotators would have
needed native knowledge of English. We, therefore, ask the annotators to perform the same task as the
heuristic annotation method by focusing on the keyword. For ethical considerations and more details,
see Appendix D.2.
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Figure 6.2: The macro-averaged F1-score of translation labels (paraphrase vs word for word)
for figurative PIEs and languages’ genetic similarity visualised.
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Figure 6.3: Spearman’s ρ for the frequency of PIEs’ paraphrased translations in OPUS and
the ratio of paraphrased examples for figurative PIEs from MAGPIE (y-axis), per the ratio
as observed in OPUS (x-axis). The means and standard deviations over language pairs are
shown in black. * marks ratio bands for which p > 0.05 for at least three language pairs.

≥ 75% and ≥ 89%, respectively. During preliminary analyses, an annotation study was
conducted for Dutch by annotators from the crowd-sourcing platform Prolific. The
annotators and the heuristic method agreed in 83% of the annotated examples, and
for 77% of the samples, an average of 4 annotators agreed on the label unanimously
(see Appendix D.2 for more details). Together, the two annotation studies suggest
that while the heuristic annotation method is imperfect, it is accurate enough for us
to analyse group-level behaviour for the different categories (with the exception of the
literal-paraphrase subset, representing only a small portion of the overall dataset).

Frequency effects Whereas a word-for-word translation of an idiom can be learnt
without ever observing the idiom in the training corpus, non-compositional paraphrased
translations are presumably only possible if the model has seen examples and memorised
them. The frequency of the PIEs and paraphrased translations in the NMT training
corpus is thus assumed to influence how these pretrained NMT models translate PIEs.
We do not have access to the exact version of OPUS used by Tiedemann and Thottingal
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OPUS Predicted Translations
Paraphrase Word for word

- Target translation type frequency (%)
Paraphrase 54 49 51
Word for word 46 7 93

- BLEU scores
Paraphrase 27.2 19.9
Word for word 25.6 38.2

- COMET scores
Paraphrase 75.1 66.3
Word for word 73.5 80.1

Table 6.3: Distribution of translation labels for PIE occurrences in OPUS for En-Nl, along
with the corresponding BLEU and COMET scores.

(2020) since OPUS is a continually growing online corpus. However, we can approximate
the frequencies of PIEs by using an OPUS subset released around the same time by
Tiedemann (2020). We collect source-target pairs for our seven language pairs containing
exact matches of the MAGPIE PIEs and apply the heuristic annotation method to this
data, restricting the data to PIEs with at least five matches in OPUS and five figurative
examples in MAGPIE. For figurative MAGPIE examples, we measure the ratios of
examples paraphrased per PIE, per language pair. If we first measure the correlation
between those ratios and the frequency of paraphrased translations in OPUS, this yields
a Spearman’s ρ of 0.44 (±0.03 across the different language pairs, with p extremely
close to 0), indicating a moderate frequency effect. Secondly, we subdivide PIEs based
on the ratio of examples paraphrased in OPUS, since it is likely that occurrences of
both paraphrased examples and word-for-word counterexamples influence how models
translate PIEs for the unseen MAGPIE data. Figure 6.3 shows that as a PIE’s ratio
of paraphrased translations in OPUS increases, so does the correlation between the
MAGPIE ratio and paraphrased translation frequency. Our analysis is an imperfect
representation of the frequency of PIEs in the training set since we lack access to the
actual training set, and only rely on exact matches. In spite of this, these results already
show the effect of frequency and demonstrate that this effect is modulated by the extent
to which the training material reflects the non-compositional nature of idioms.

Translation quality Sentences containing idioms typically yield lower BLEU scores
(Fadaee et al., 2018). MAGPIE is a monolingual corpus and does not allow us to compute
BLEU scores, so to gain some understanding of whether the model’s translations reflect
target translations from its training corpus, we use the same OPUS subset mentioned
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above to extract up to 500 source-target pairs with exact PIE matches for En-Nl, and
collect translations using the En-Nl model. We label both the source-target pairs and
model translations heuristically. Table 6.3 illustrates how the predicted translations’
labels relate to the labels of target translations and provides BLEU and COMET-22 (Rei
et al., 2022) scores per subset. 54% of the target translations are labelled as paraphrased
instances, which is substantially higher than the percentage of paraphrased instances
in the model’s translations. Of the target translations labelled as a paraphrase, only
half of the model’s translations are also labelled as a paraphrase, signalling a lack of
memorisation in the model. In terms of BLEU and COMET scores, model translations
for examples with paraphrased target translations score substantially lower compared
to those with word-for-word target translations, emphasising the negative impact of
idioms on translation quality. When interpreting these results, we should, however, keep
in mind that translation is a many-to-many mapping, and that an individual idiom can
have multiple correct paraphrases, as discussed in §2.3.3. n-gram overlap could thus
underestimate translation quality when idioms are involved. COMET relies on neural
models for quality estimation and is thus more semantics-aware. Nonetheless, COMET
could still underestimate the translation quality, since the neural models employed
by COMET (among which cross-lingual RoBERTa, Conneau et al., 2020) likely also
suffer from the tendency to interpret non-compositional phrases overly compositional,
particularly for phrases that are very infrequent.

6.3 Attention analyses

We now turn to comparing how literal and figurative PIEs are processed by transformer.
Whether a PIE is figurative depends on the context – e.g. compare “in culinary school,
I felt at sea” to “the sailors were at sea”. Within transformer, contextualisation of
input tokens is achieved through the attention mechanisms, which is why they are
expected to combine the representations of the idioms’ tokens and embed the idiom in
its context. This section discusses the impact of PIEs on the encoder’s self-attention
and the encoder-decoder cross-attention. Consider §2.1 for a review of how attention is
defined, and the role attention plays within transformer.

Attention within the PIE For the En-Nl transformer, Figure 6.4a visualises the
distribution of attention weights in the encoder’s self-attention mechanism for incoming
weights to one noun contained in the PIE from the remaining PIE tokens. In the
figures, we refer to the subset of sentences that have a figurative PIE and a paraphrased
translation as ‘fig-par ’. The subset of sentences with a literal PIE and a word-for-word
translation is indicated by ‘lit-wfw’. We compare those two subsets, as well as all
instances of figurative PIEs (‘fig’) to all instances of literal PIEs (‘lit’). Overall, there is
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increased attention for figurative occurrences of PIEs compared to literal instances. This
difference is amplified for the subset of figurative PIEs yielding paraphrased translations.
This pattern is consistent for all language pairs, as is displayed in Figure 6.4d that
presents the difference between the mean attention weights of the figurative, paraphrased
instances, and the mean weights of the literal instances translated word for word. In
other words, figurative (paraphrased) PIEs are grouped more strongly than their literal
counterparts. This is in line with previous work that identified explicitly representing
idioms as one word can improve idiom translations (Zaninello and Birch, 2020) and
idiomaticity detection in contextual embeddings (Hashempour and Villavicencio, 2020).

Attention between PIEs and context To examine the interaction between a PIE and
its context, we obtain the attention weights from tokens within the PIE to nouns in the
surrounding context (Figure 6.4b).6 Similarly, the attention from the surrounding context
to PIE nouns is measured (Figure 6.4c). There is reduced attention from PIEs to context
for figurative instances, which mirrors the effect observed in Figure 6.4a: increased
attention within the PIE is accompanied by reduced attention to the context. This
pattern is consistent across languages (Figure 6.4d). Reduced attention to the context
seems somewhat counter-intuitive, given that correctly interpreting and translating
PIEs requires disambiguation through the context. This could potentially signal that
the model does not adequately disambiguate PIEs and has mostly memorised how to
translate PIEs independent of context. The fact that context may be inadequately
leveraged by neural models during idiom detection was previously pointed out by related
work (§2.3.3), and we previously observed some empirical evidence for that in §5.3.3.

From the context to the PIE, the average weight is slightly higher for literal PIEs,
but the effect size is small, indicating only a minor impact of figurativeness on the
context’s attention weights. This will be further investigated in §6.4.

Cross-attention To analyse the encoder-decoder interaction, we decode translations
with a beam size of five and extract the cross-attention weights for those translations.
Afterwards, alignments are computed for the models’ predictions by, together with 1M
sentences from the OPUS corpus per target language, aligning them using the eflomal

toolkit (Östling and Tiedemann, 2016). The alignment is used to measure attention
from a token aligned to a PIE’s noun to that noun on the source side.

How does the automated aligner handle paraphrases when automatically aligning
sentences with PIEs to translations labelled as a paraphrase? For many PIEs (≤ 34% of
the fig-par sentences for all language pairs), the paraphrases do not have a word in the
translation aligned to the PIE keyword on the source side. These examples are excluded.

6We consider a context of 10 tokens to left, and 10 tokens to the right, or smaller, as sentence length
permits. The mean total context size is 15 for both figurative and literal examples.
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(d) Language pair comparison

Figure 6.4: Weight distributions of the encoder’s self-attention for En-Nl (a-c), and the
mean difference of fig-par and lit-wfw for all language pairs (d). Boxes represent quartiles;
whiskers show the distribution, excluding outliers.

However, for a subset that appears more well-known, there are common paraphrases
that the PIE keyword aligns with. We provide examples for Dutch in Table 6.4. The
examples provided in the table together cover 48% of all aligned sentences used in
the cross-attention analysis for the fig-par category, and all are reasonable alignments,
strengthening the reliability of the cross-attention results.

We now turn to the cross-attention patterns observed: Figure 6.5a presents the
attention distribution for the weights that go from the noun’s translation to that PIE
noun on the source side, for the En-Nl model. There is a stark difference between
figurative and literal PIEs, through reduced attention on the source-side noun for
figurative PIEs. This difference is particularly strong for the figurative sentences that
are paraphrased during the translation: when paraphrasing, the model appears to rely
less on the source-side noun than when translating word for word. Where does the
attention flow, instead? To some extent, to the remaining PIE tokens (Figure 6.5b). A
more pronounced pattern of increased attention on the EOS token is shown in Figure 6.5c.
Figure 6.5d compares the mean attention weights of the seven language pairs for the
figurative inputs that are paraphrased to the literal samples that are translated word
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(d) Language pair comparison

Figure 6.5: The cross-attention for target-side tokens aligned to PIE nouns for En-Nl (a-c),
and the mean difference between fig-par and lit-wfw for all language pairs (d).

for word, confirming that these patterns are not specific to En-Nl.
The large attention weights for the EOS token resemble attention patterns that have

been observed by Clark et al. (2019b) for BERT’s [SEP] token. Since the [SEP] token
is in itself a contextualised token, Clark et al. entertained the hypothesis that the token
might aggregate information from an entire segment, which could be used by attention
heads by attending to [SEP]. However, gradient-based feature importance analyses,
qualitative analyses of attention heads, and the fact that [SEP] was found to mostly
attend to itself, instead suggested that this behaviour indicates a no-operation.7 Ferrando
and Costa-jussà (2021) later analysed the same phenomenon for NMT transformers’
cross-attention mechanisms, concluding – by analysing the norms of EOS tokens’
value vectors – that large cross-attention weights for the source-side EOS token have
a similar no-operation function, regulating the amount of information the decoder
collects from the input sequence. In our case, the increased attention to the EOS
token for figurative-paraphrased PIEs could thus suggest that the decoder collects

7Following the publication of this chapter, a related phenomenon was observed in autoregressive
LLMs, in which a lot of attention flowed to the BOS token. This became known as the ‘attention sink’
phenomenon (Xiao et al., 2024). See Ferrando et al. (2024) for a discussion on parallels between the
two phenomena.
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PIE Dutch paraphrase (literal backtranslation) Aligned tokens

across the board over hele linie (over the whole line) board → linie
behind the scenes achter de schermen (behind the screens) scenes → schermen
break new ground nieuwe weg inslaan (take a new road) ground → weg
by heart uit het hoofd (from the head) heart → hoofd
by the same token op dezelfde manier (in the same way) token → manier
come to mind in me opkomen (come up in me) mind → me
come of age volwassen worden (become an adult) age → volwassen
face to face oog in oog (eye in eye) face → oog
follow suit het voorbeeld volgen van (follow the example of ) suit → voorbeeld
for good measure in goede mate* (in good measure) measure → mate
from scratch vanaf nul (from zero) scratch → nul
from the word go vanaf het begin (from the start) word → begin
get a move on schiet op (hurry) move → schiet
get the picture een completer beeld krijgen (get a more complete vision) picture → beeld
get to grips with (aan)pakken (take on) grips → pakken
give someone the creeps kriebels krijgen (getting tickles) creep → (krie)bel
in broad daylight op klaarlichte dag (on a luminous day) day(light) → dag
in full swing in volle gang (in full progress) sw(ing) → gang
in the flesh in levende lijve (in the living body) flesh → lij(ve)
in the long run op de lange termijn (on the long term) run → termijn
in the short run op de korte termijn (on the short term) run → termijn
keep a low profile zich gedeisd houden (to lay low) profile → (gede)is(d)
off the record onofficieel (unofficial) record → (onoffici)eel
on someone’s mind iets aan je hoofd hebben (have something on your head) mind → hoofd
once in a while af en toe (on and off ) while → toe
out of the blue uit het niets (out of nothing) blue → niets
out of the question uit de boze (from the bad) question → boze
set eyes on zien / zag (see / saw) eyes → zag
small print in de kleine lettertjes (in the little letters) print → (letter)tjes
take a back seat op de achterbank* (on the back bench) seat → bank
take stock de balans opmaken (make up the balance) stock → balans
to all intents and purposes in alle opzichten (in all aspects) intent → opzichten
to boot opstarten* (to start) boot → (op)starten
to the tune of voor het bedrag van (for the amount of ) tune → bedrag
with a view to met het oog op (with the eye on) view → oog

Table 6.4: PIEs for which the word most commonly aligned to the keyword occurs > 20
times. Together, these keywords determine 48% of all the alignments used to perform the
cross-attention analysis for fig-par in the English-Dutch model. Subwords shown in brackets
are due to the tokens used in Marian-MT: eflomal aligns the parts outside of the brackets
to one another. ⋆Example of a PIE for which the heuristic annotation missed out on a
potential literal translation.

less information from the source side than it does for expressions translated word for
word.
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Figure 6.6: The self-attention and cross-attention differences between the figurative-
paraphrase and literal-word-for-word subsets, for examples with identical PIE matches.

Revisiting attention for data subsets The aforementioned results include all MAGPIE
examples previously mentioned in §6.2. To further investigate whether the differences in
attention patterns observed are due to factors other than figurativeness and paraphrasing,
we recompute the attention patterns for three additional data subsets.

Firstly, we consider PIE identical matches: this subset only includes samples for
which MAGPIE reports an identical match between the PIE and the English sentence,
which applies to 17k samples. This subset excludes sentences with modifications to the
typical surface form of a PIE, such as inflected variants, variants with words inserted, or
passivised variants (e.g. “You get the loot when the beans are spilled in (...)”). Figure 6.6
shows the attention patterns previously discussed for the encoder’s self-attention and
cross-attention, providing the same qualitative findings as before.

The second subset considered only contains idioms that are among all of the
subsets of figurative, literal, paraphrased and word-for-word instances, covering 11k
examples from the dataset. The results for the self-attention and cross-attention patterns
are shown in Figure 6.7. These results lead to the same qualitative findings as previously
mentioned, and, in the encoder, the PIE to PIE attention patterns for figurative and
literal PIEs are even more different than before.

Lastly, we restrict the length of a PIE by selecting a subset of examples that
contains three tokens annotated as belonging to the PIE, with one non-PIE token
in between. This covers a subset of approximately 7k samples, with small variations
between languages due to slightly different tokenisation of the English words. Figure 6.8
presents the results for the self-attention and cross-attention analyses, respectively.
Qualitatively, our findings for this subset do not differ from the previous findings,
although in absolute terms, the differences in the encoder attention within the PIE are
of a smaller magnitude than before.

Collectively, the results provide the observations depicted in Figure 6.1. When para-
phrasing a figurative PIE, the model groups idioms’ parts more strongly than it would
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Figure 6.7: The self-attention and cross-attention differences between the figurative-
paraphrase and literal-word-for-word subsets, for PIEs that are in the intersection of all four
labels (figurative, literal, paraphrase, word-for-word).
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Figure 6.8: The self-attention and cross-attention attention differences between the figurative-
paraphrase and literal-word-for-word subsets, for stimuli that were length-controlled.

otherwise – i.e. it captures the PIE more as one unit. Increased attention within the
PIE is accompanied by reduced interaction with context, indicating that when PIEs
are paraphrased, they are translated more in a stand-alone manner compared to PIEs
translated word for word. We also observed reduced cross-attention to the source-side
PIE and increased attention to the </s> token when the model emits the translation of
figurative (paraphrased) PIEs. This suggests that when paraphrasing, the decoder acts
more detached from the encoder compared to when translating word for word.

6.4 Hidden representations analyses

Within transformer, the encoder’s upper layers have previously been found to encode
semantic information (e.g. Raganato and Tiedemann, 2018). PIEs’ hidden states are
expected to transform over layers due to contextualisation and become increasingly
more indicative of figurativeness. This section focuses on the impact of PIEs on the
hidden states of transformer’s encoder. We first discuss how much these hidden states
change between layers. Secondly, we measure the influence of a token by masking it out
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in the attention and analysing the degree of change in the hidden representations of
its neighbouring tokens. This analysis is performed to consolidate findings from §6.3,
since the extent to which attention can explain model behaviour is a topic of debate (as
discussed in §2.1.4).

6.4.1 PIE changes over layers

To compare representations from different layers, we apply CCA (Hotelling, 1936)
(previously detailed in §2.1.4), using an implementation from Raghu et al. (2017).
CCA linearly transforms two sets of representations of the same datapoints, such as to
maximise the correlations between the transformed representations. We perform CCA
using >60k random token vectors for a previously unused subset of the MAGPIE corpus
– the subset of sentences that did not contain nouns in the PIEs – to compute the CCA
projection matrices that are then used to project new datapoints before measuring
the datapoints’ correlation. The CCA similarity reported in the graphs is the average
correlation of projected datapoints. We do not perform CCA separately per data subset
due to the small subset sizes and the impact of vocabulary sizes on CCA correlations
for small datasets (in Appendix D.3 we demonstrate how CCA is sensitive to these
factors).8

We compute the CCA similarity for hidden states from consecutive layers for PIE
and non-PIE nouns. Figurative PIEs in layer l are typically less similar to their
representation in layer l−1 compared to literal instances (shown in Figures 6.9b for
the En-Nl transformer), and that difference is larger for figurative PIEs that are
paraphrased. Figure 6.9c summarises the difference between literal-word-for-word and
figurative-paraphrased cases for the seven different language pairs. The results for
non-PIE nouns (see Figure 6.9a for the En-Nl results) do not differ across data subsets,
suggesting that changes observed for figurative PIEs are indeed due to figurativeness,
and not due to other differences between sentences from the different data subsets. The
differences in similarity are the largest for layers three to five.

6.4.2 Intercepting in attention

We now compute similarities of representations for our models in two setups: with and
without one token masked in the attention mechanism, similar to Voita et al. (2019a).
Masking a token means that other tokens are forbidden to attend to the chosen one;
this is implemented via the mask from Equation (2.2) as discussed in §2.1. This can
reveal whether the attention patterns discussed in §6.3 are indicative of the influence

8Extensions of CCA have been proposed that limit the number of CCA directions over which the
correlation is computed, to only include directions that explain a large portion of the variance (Raghu
et al., 2017; Morcos et al., 2018). We do not remove directions, such as to avoid removing smaller
variance components that could still cue figurativeness (the focus of our work).
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(c) Language pair comparison for PIE nouns

Figure 6.9: CCA similarity for layers l and l+1, for PIE and non-PIE nouns. The language
comparison displays the difference in similarity between lit-wfw and fig-par.

tokens have on each other’s hidden representations.9 The first representation is the
hidden representation from layer l for a token encoded as usual. The second one is
the hidden representation of layer l when applying the first l−1 layers as usual and
masking one token in the lth layer. CCA is again performed on separate data to provide
the projection matrices applied before computing similarities in the remainder of this
subsection.

Masking a PIE token To estimate the influence of PIE nouns, we first compute the
CCA similarity between two representations of tokens from the PIE’s context while
masking one PIE noun in the attention for one of those representations. Similarly, we
measure the influence on other tokens within the PIE when masking one PIE noun.
Within the PIE, the influence is the largest for figurative-paraphrased instances (see
Figure 6.10a for En-Nl and Figure 6.10e, ‘PIE-PIE’ for averages over layers for all
language pairs). This is in line with the attention pattern observed. However, when
inspecting the influence of masking a PIE noun on context tokens, there are barely
any differences between figurative and literal PIEs (see Figure 6.10b, and ‘PIE-con’ in
Figure 6.10e). This indicates that the slight difference in attention from the context to
the PIE for figurative and literal PIEs observed in §6.3 does not necessarily affect the
hidden representations.

9Note that it does not necessarily mean that the representations do not encode any information
about the masked token, since due to contextualisation prior to layer l the remaining tokens may also
partially encode the masked token’s identity.
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Figure 6.10: Influence of masking a PIE noun in the attention on (a) other PIE tokens, (b)
other context tokens. Influence of masking a non-PIE noun on (c) PIE tokens and (d) other
non-PIE tokens. (e) shows the difference in similarity between lit-wfw and fig-par.

Masking a context token Lastly, we measure the influence of masking a noun in the
context of the PIE on PIE tokens and non-PIE tokens. Within the PIE, as shown in
Figure 6.10c for En-Nl and Figure 6.10e (‘con-PIE’) for all language pairs, figurative
PIE occurrences are less affected by the masked context noun compared to literal
PIE occurrences. Again, this mirrors the patterns observed for attention, where less
attention was paid to the context for figurative PIEs. When masking a non-PIE noun
and measuring the influence on non-PIE tokens, one would hardly expect any differences
between data subsets, as is confirmed in Figures 6.10d and 6.10e (‘con-con’).

In summary, these analyses confirm most of the trends noted for attention patterns.
Intercepting in the attention through masking indicated that for PIE tokens, there is
less interaction with the context. However, this does not necessarily mean that the
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Figure 6.11: Macro F1-score for probes predicting PIEs’ labels. Error bars show standard
deviations over folds; the dashed lines represent a random baseline.

context interacts less with figurative PIEs compared to literal PIEs, even if there was a
slight difference in attention in §6.3. The CCA analyses furthermore showed that nouns
from figurative PIEs are distinct in how they change over layers, compared to non-PIE
nouns.

6.5 (Amnesic) probing for figurativeness

The previous analyses compared the hidden states for figurative and literal PIEs, but
do not use these labels otherwise. We now train logistic regression behavioural probing
classifiers (Conneau et al., 2018; Hupkes et al., 2018, i.a.) – previously introduced in
§2.1.4 – to predict the label from hidden representations. Afterwards, we use amnesic
probes to alter the models’ translations.

Behavioural probes The probes’ inputs are the hidden states of PIE tokens, and the
F1-scores are averaged over five folds. All samples from one PIE are in the same fold,
such that the classifier is evaluated on PIEs that were absent from its training data. The
results (Figure 6.11) indicate that figurativeness can be predicted from these encodings,
with performance increasing until the top layer for all language pairs. Although there
is not one individual layer that stands out in terms of a particularly large increase in
F1, the highest layers show reduced increases compared to the lower layers, suggesting
that, in line with our previous results, figurativeness affects much more than just the
highest layers, and figurative PIEs become gradually more distinct. F1-scores for the
embeddings already exceed a random baseline, indicating some idioms are recognisable
independent of context.

Amnesic probes Finally, we use probing classifiers to change models’ PIE translations
through amnesic probing (Elazar et al., 2021) – previously introduced in §2.1.4 –
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patterns after INLP for En-Nl.

Figurative probe Frequency probe
% BLEU % BLEU

nl 36 75 34 75
de 33 68 33 69
sv 27 77 27 77
da 32 77 27 78
fr 37 77 30 76
it 39 76 34 77
es 40 78 30 78

Table 6.5: The effect of amnesic probing, measured using the mean success rate per PIE
(%), and the BLEU score of paraphrased translations that changed into a word-for-word
translation, comparing the translation before and after INLP.

which removes features from hidden states by projecting them onto the null-space of
trained linear probes using INLP (Ravfogel et al., 2020) and measures the effect of
these interventions. We train 50 classifiers to distinguish figurative and paraphrased
PIEs from literal PIEs translated word for word, and use them to calculate the INLP
projection matrix. Afterwards, we run the sentences with previously paraphrased PIEs
through the model while removing information from the PIEs’ hidden states using the
projection matrix. Per PIE, we record the percentage of translations that are no longer
paraphrased.

We separate the data into five folds, of which we use one to determine where in the
model to intervene, based on the average success rate per PIE (where success means
achieving a word-for-word translation). As shown in Figure 6.12, there is quite some
variation among languages, but generally, intervening in the lower layers of transformer
is the most successful. We now continue computing results on the remaining four folds
by intervening in l ∈ {0,1,2,3,4}. We report the percentages along with BLEU scores
comparing translations that changed label before and after INLP.

Table 6.5 presents the results. When intervening in the hidden states for all layers
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Dutch

German

Swedish

Danish

French

Italian

Spanish
Then, brisk again, ' I 'll bear it in mind. '

Entonces, rápido de nuevo, ' Lo tendré en cuenta. '

Entonces, anímate de nuevo, 'Lo tendré en mente'.

The two went hand in hand until the later nineteenth century.

I due andarono di pari passo fino al XIX secolo.
I due sono andati mano nella mano fino al XIX secolo successivo.

(...) beside a autobank, which was out of order.
(...) à côté d'une autobanque, ce qui était hors service.

(...) à côté d'une autobanque, ce qui n'était pas de l'ordre.

(...) managership is absent across the board in Britain.
(...) lederskab er fraværende over hele linjen i Storbritannien.
(...) lederskab er fraværende på tværs af bestyrelsen i Storbritannien.

Vocal communication is out of the question till after the third cup (...)

Vokal kommunikation är uteslutet till efter den tredje koppen (...)

Vokal kommunikation är ute ur frågan tills efter den tredje koppen (...)

The trouble is, we don't see eye to eye, or, (...) 

Het probleem is dat we het niet met elkaar eens zijn... of (...)
Het probleem is, we zien geen oog tegen oog, of, (...)

(...) of the Salvation Army has broken new ground at the site.
(...) der Heilsarmee hat am Standort neue Wege eingeschlagen.

(...) der Heilsarmee hat am Standort einen neuen Boden eingeschlagen.

Figure 6.14: Source sentences and translations before and after INLP. PIEs and word-for-
word translations are in bold font; paraphrases are in italics. Colours indicate attention
changes with respect to the underlined nouns.

l ∈ {0,1,2,3,4}, the average success rate per PIE ranges from 27% (for Swedish) to 40%
(for Spanish). At the same time, the high BLEU scores for examples that changed in
terms of their translation’s label demonstrate that the translations are still very similar;
we did not impair the model’s ability to translate, and the interventions successfully
targeted the PIE only. If we now extract the attention patterns for the translations that
changed, we note that the interventions reduced attention within the PIE and increased
interaction with the context (see Figure 6.13 for En-Nl). Table 6.5 also provides results
for a baseline probe predicting whether the half-harmonic mean of the Zipf-frequency of
PIE tokens is below or above average. This probe is successful too, emphasising how
brittle idiomatic translations are: when removing information from the hidden states,
the model reverts to compositional translations.

Figure 6.14 provides example translations before and after the application of INLP,
while indicating how the attention on the underlined noun changes. Generally, the
attention on that noun reduces for PIE tokens other than itself.

In summary, the behavioural probing accuracies differed across layers and suggested



Chapter 6. The mechanisms behind idiom processing 157

figurative PIEs become more distinct across the different layers. When we applied
amnesic probing to the encoder’s hidden states, we identified that we can alter models’
translations through this, and that the attention patterns resemble patterns for literal
PIEs more when doing so. This further consolidates a causal connection between the
model’s paraphrasing of figurative PIEs and the attention. However, amnesic probing
did not change the paraphrases for all idioms. This could either be because figurativeness
is not merely linearly encoded in the hidden states, or because the decoder might be
able to recover information about the figurativeness of PIEs when we intervene in the
encoder only.

6.6 Conclusion and discussion

PIEs pose challenges for MT because adequately translating them requires disambiguat-
ing whether the PIE is used figuratively, and paraphrasing the memorised meaning of
figurative PIEs in the target language. Behavioural evaluation has shown that this is
challenging for transformer NMT systems (e.g. Fadaee et al., 2018; Zaninello and Birch,
2020), and in §3.4 we, ourselves, already noticed that sentences containing idioms score
lower in terms of both memorisation during training and evaluation during testing com-
pared to control stimuli. Yet, it is largely unknown how this process affects transformer
internally, and which mechanisms positively contribute to cases where the model does
paraphrase the idiom.

In this chapter, we focused on the internal mechanisms of NMT systems that enable
idiomatic translations, a specific form of memory recall since paraphrased translations
of idioms do not straightforwardly follow from the translations of the individual words
contained in the idiom, and have to be memorised. To examine this at scale, we used an
English idiom corpus and heuristically labelled translations for seven target languages.
We compared hidden states and attention patterns for figurative and literal PIEs. We
identified that, in the encoder, figurative PIEs are grouped more strongly in the attention
as one lexical unit than literal instances and interact less with their context. The effect
is stronger for paraphrased translations, suggesting that capturing idioms as single units
and translating them in a stand-alone manner aids idiom processing. By analysing the
hidden states, we confirmed that the changed attention patterns do, in fact, lead to
changes in the residual stream. The finding regarding the grouping of tokens agrees
with results from Zaninello and Birch (2020), who ascertain that encoding an idiom
as one word improves translations. It also agrees with the amnesic probing, which
yielded more compositional translations whilst changing the attention. By relying less
on the encoder’s output, the decoder determines the meaning of figurative PIEs more
independently than for literal ones.

The various experiments performed underscored that encoding figurativeness of PIEs



Chapter 6. The mechanisms behind idiom processing 158

is not something specific to individual layers, or to the highest layers of transformer,
which have been suggested to capture high-level semantic features (e.g. Raganato and
Tiedemann, 2018). PIEs become gradually more distinct over layers, and attention
patterns and hidden representations of figurative PIEs stand out from layer one onwards.

Although we learnt about the mechanics involved in idiomatic translations, the vast
majority of translations were still word-for-word, indicating that non-compositional
processing does not emerge well (enough) in transformer. Paradoxically, for many years,
it was a trend in NLP to encourage more compositional processing in NMT, to increase
systems’ robustness and reduce their volatility as discussed in chapter 5 (Raunak et al.,
2019; Chaabouni et al., 2021; Li et al., 2021a, i.a.). We recommend caution with this:
while favouring compositional translations might improve robustness, it is likely to harm
translations of formulaic or figurative language. It may be beneficial to evaluate the
effect of compositionality-favouring techniques on non-compositional phenomena like
idioms to ensure their effect is not detrimental to these phenomena.

6.6.1 Limitations

We identify four main limitations of our work. Firstly, our heuristic labelling is
inherently limited. As discussed in §6.2, the annotation studies conducted to assess
our heuristic labelling method showed that it does not achieve perfect accuracy. The
method performed best for word-for-word translations of literal PIEs and worst for
paraphrased translations of literal PIEs. Consequently, our analysis has primarily
focused on the differences between the figurative-paraphrased and literal-word-for-word
subsets. Nonetheless, even the figurative-paraphrased subset contains some erroneous
annotations, as illustrated in Table 6.4. We consider the method sufficiently accurate
to reveal general trends in differences between subsets, which has been the focus of
our analysis. However, the labelling does not guarantee that what is labelled as a
‘paraphrase’ is in fact a faithful paraphrase. It also only labels translations based on the
absence or presence of translations of (mostly) the idiom’s nouns, ignoring how verbs
are translated. We opted for this to make the labelling more accurate, since nouns have
fewer surface forms than verbs do.

The second limitation is that we examined only seven language pairs and a single
architecture (transformer-base, Vaswani et al., 2017). All language pairs belong to
the Germanic and Romance branches of the Indo-European language family, which
restricts the generalisability of our conclusions. We limited ourselves to these languages
because they are generally high-resource and are likely to exhibit reasonable coverage of
the idioms used in training data. Even within this limited scope, only around 20% of
figurative PIEs were paraphrased by the models; for lower-resource languages, this figure
would likely be even lower. We chose transformer-base as it has been the predominant
architecture used in open-source pretrained translation systems since transformer’s
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introduction in 2017.
Thirdly, we emphasise that our focus was primarily on the role of the encoder

in paraphrasing idiomatic translations. Our only decoder-focused experiment was the
cross-attention analysis. Decoder-based analyses are more difficult to scale, owing to the
many surface forms that idiomatic paraphrases may take and the potential inaccuracies
of alignment tools used in the process. We manually evaluated a subset of our eflomal

alignments to ensure the reliability of our results. We encourage future research to
investigate the decoder’s role more thoroughly – particularly the causal influence of the
attention patterns we identified for figurative-paraphrased PIEs.

Lastly, although we analysed the mechanisms behind idiom processing, we did not
explore methods for improving idiomatic translations. We encourage future work
to leverage our insights. In §6.2, we noticed the relevance of the frequency of PIEs in
the training material. Dedicated PIE corpora are scarce, but even without those, one
can filter standard NMT corpora based on frequently-occurring surface forms of PIEs,
and perform some continual learning on a training data subset. One could also explicitly
incorporate the non-compositional nature of idioms in the training objective, e.g. by
penalising high probabilities for literal translations of source-side idioms, or learning
specialised attention heads to group multi-word expressions.

6.6.2 Retrospective and outlook

In the years that followed the publication of this chapter, great progress has been made
in the translation of idioms and related model analyses. Three articles, in particular,
present findings highly related to our work:

• On heuristic annotation: Baziotis et al. (2023) proposed a heuristic labelling
method similar to ours to identify literal translation errors. Their LitTER metric
similarly uses bilingual dictionaries to collect potential literal translations of the
source idiom in a ‘blocklist’. Different from our method, they update their blocklist
using target translations by removing words occurring in the reference from the
blocklist. LitTER was used to demonstrate that for EuroParl data and English to
French/Spanish translation, literal translation errors are highly frequent, and that
pretraining a model on monolingual data boosts performance.

• On the attention patterns: Directly inspired by our findings, Lim et al. (2024)
examine how well various features predict the translation difficulty of segments,
including attention within the segment, attention to the context and attention
to the EOS-token. They quantify difficulty based on human reading times and
identify that although attention is not directly predictive of reading time, source
segments that are harder to translate direct less attention to the context. They
also establish that target segments that are harder to translate show increased
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cross-attention to the EOS token. Idiomatic paraphrases, which we explored, are
one example of segments that are harder to translate, and the findings from Lim
et al. thus suggest that the qualitative patterns we identified might not be unique
to idiomatic translations.

• On idiom analyses over layers: Haviv et al. (2023) studied how idiomatic
predictions are formed over the many layers of BERT and GPT-2. They present
idioms without context, requiring their models to predict the final token. They
identify a two-stage process, where the earlier layers quickly increase the rank of
the predicted token, and the later layers boost the probability of that token. For
idioms that the model memorised correctly, the predicted token starts out at a
lower rank compared to non-memorised examples, but ends with a much higher
probability. By intervening in the feedforward modules of the earliest (but not
later) layers, the idiomatic memories were suppressed. In spite of the difference in
models analysed and the task considered, our results do also suggest that encoding
idiomaticity already starts in the lowest layers: both attention patterns (§6.3) and
the masked hidden state analyses (§6.4) show the ‘figurative-paraphrased’ subset
diverging from layer one, and INLP-based amnesic probing was also more effective
in early layers (§6.5).

The lack of parallel idiom corpora has been a major limitation when it comes to
analysing or improving idioms’ translations. While this remains a core issue, some
initiatives have released new data, such as a Korean-English challenge set with multiple
types of figurative language (Lee et al., 2025), IdiomsInCtx-MT by Stap et al. (2024)
including test sets for idioms in context for three language pairs, and ACES by Amrhein
et al. (2022), which includes overly-literal translations in German-English as one of 68
core challenging phenomena used to evaluate common MT quality metrics.

Solutions for improving idiomatic translations have primarily targeted fine-tuning
models using parallel data (Santing et al., 2022) and incorporating the idiom’s meaning
in the translation. The meaning can be incorporated by encouraging the model to
paraphrase the idiom before translating it (Santing et al., 2022), including information
about the idiom and alternative idioms in the target language from an external database
(Li et al., 2024b; Donthi et al., 2025), or including k-NN based retrieval while translating
such as to retrieve training examples including the same idiom (Liu et al., 2023a).

Even though these solutions specific to the nature of idioms have shown moderate
improvements, the largest benefits still appear to have come from simply scaling the
training data and model sizes, which is demonstrated both by targeted experiments
showing improvements from monolingual pretraining (Baziotis et al., 2023; Stap et al.,
2024), and the general superiority of larger LLMs that were released post 2022. Raunak
et al. (2023), for instance, demonstrate that GPT-3.5 predecessors produced more
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Figure 6.15: Interaction with ChatGPT, GPT-4o mini, retrieved on April 14, 2025.

non-literal translations of idioms compared to both academic and other commercial
translation models. And yet, for the most powerful commercial and non-commercial
translation systems and LLMs, researchers continue to echo our findings of overly
compositional translations for a range of languages, such as German, Spanish and
Japanese (Ferrando et al., 2023), Arabic (Obeidat et al., 2024), Urdu (Basit et al., 2024)
and Indonesian (Dewayanti and Margana, 2024). Figure 6.15 illustrates how GPT-4o

mini, for instance, makes such a mistake of translating an idiom word for word when
translating from English to Dutch (“chickens came home to roost” is translated as
“kippen kwamen thuis om te rusten”). Interestingly, upon querying the model, it is able
to point out its own mistake, demonstrating it has memorised the correct meaning, yet
does not produce it in the translation. This underscores how non-compositionality poses
challenges, and how these are amplified in the multi-step process of translating idioms,
involving disambiguation, memory recall and adequate paraphrasing.



Chapter 7

Conclusion

In this thesis, I discussed the topic of memorisation and the extent to which it stands in
contrast with generalisation. I considered memorisation as a quantifiable phenomenon
that is the result of a model and its training procedure, and memorisation for the case
study of non-compositional idiomatic expressions. I also discussed the topic of composi-
tionality more broadly, studying to what extent transformer behaves compositionally,
while acquiring non-compositional idiom processing. The conclusions from the four
content chapters provide us with the following seven lessons concerning the general
research questions laid out in chapter 1.

What characterises memorised examples?

With respect to RQ1, we have learnt that (1) memorisation is not a mysterious
phenomenon, but a process that is predictable based on datapoints’ features.
In chapter 3, we created a resource of memorisation metrics for NMT, describing
datapoints through their training memorisation (TM), counterfactual memorisation
(CM) and generalisation scores, emphasising that memorisation is not necessarily binary,
but exists along a continuum. A large part of the variance in these scores can be
explained based on surface-level features, such as the overlap between the source
and target sequences, and these features affected systems from five Indo-European
language pairs in the exact same way. Examples with high CM scores are mostly
datapoints showing natural variation in translations, and are not simply misaligned
training data. When it comes to idioms, frequency influences whether or not NMT
models manage to memorise and paraphrase them (chapter 6), but only for idioms
whose non-compositionality is preserved within the training material.

Moreover, (2) what is thought of as requiring memorisation, is not neces-
sarily what is memorised by models within a standard training regime. In
chapter 3, we studied what models actually memorise within a rather standard experi-
mental setup. That does not necessarily mean that examples that we want models to
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memorise are memorised. In general, NMT systems do not show adequate memorisation
of idioms (which, to some extent, also applies to non-compositional noun compounds
and proverbs), since they translate them mostly in a word-for-word fashion (chapter 6).
This can be explained based on surface-level features of these examples, such as a low
word overlap or a high edit distance between the source and its backtranslated target.

Which model-internal mechanisms enable memorisation?

With respect to RQ2, (3) memorisation is not a process that can be easily
localised to individual layers or parameters but is a cooperative process of
many layers. We investigated this in chapter 4, where we performed localisation of
the memorisation of mislabelled examples. By applying four localisation methods to
four fine-tuned transformer-based LMs on twelve tasks, we established that none of
the individual layers implement memorisation of the noisy labels. Instead, many layers
cooperate to gradually move noisy examples towards their newly assigned label, and we
made this visually explicit through our centroid analysis. Contrary to what a subset of
previous work suggests, models’ deepest layers do not play a special role here. We did
identify a subtle influence of the classification task investigated, where memorisation
shifts up or down in the model. This effect is correlated with models’ generalisation
performance on unseen data, suggesting that the more distinct memorised examples are
from the remaining datapoints, the more separation occurs internally of performing the
main task and encoding the memorised noisy label.

In chapter 6, we identified that (4) mechanisms for paraphrasing memorised
idioms in translation involve ‘grouping’ on the source side and disconnecting
from the encoder on the target side. To identify this, we contrasted the attention
distributions of figurative, paraphrased (and thus memorised) idioms to literal expressions
translated word for word, using NMT systems from seven Indo-European language pairs.
We found increased attention within the idiom and reduced interaction with the context
– i.e. idioms that are paraphrased are processed more as one non-compositional unit than
the literal phrases. When paraphrasing, the decoder attends less to the idiom’s tokens
on the source side, directing attention to the EOS token instead. In line with chapter 4,
we observed that hidden representations for memorised idioms gradually become more
distinct over the course of the encoder’s layers rather than suddenly standing out in one
particular layer, emphasising that idiom memorisation similarly is a distributed process.

To what extent are memorisation and generalisation at odds with one
another?

With respect to RQ3, we established that (5) memorisation of atypical examples
can be beneficial for models’ generalisation capabilities, presumably due to
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the variation that characterises natural language. The fact that memorisation, in
general, occurs in neural networks trained on natural language tasks is beneficial for their
generalisation capabilities. We demonstrated this for NMT, where both experiments
that leave out subsets of the memorisation continuum, or solely train on subsets of the
memorisation continuum, show a benefit of examples with higher CM scores (chapter 3).
This conclusion is, however, specific to the amount of noise contained in the dataset and
how much of that noise models memorise over the course of training. In NMT, even
with 1M training examples, the misaligned examples were not memorised, but it is not
a guarantee for all tasks and setups that memorisation will always be beneficial.

In chapter 5, we determined that (6) idiom acquisition is a multi-phase process
involving overgeneralisation first, and memorisation second by training English-
Dutch NMT systems and tracing translations of 20 idioms over the course of training.
Although this is a natural consequence of the non-compositional nature of idioms, we
were the first to demonstrate this for idioms in a natural language context. If a part of
the experimental setup involves model selection based on the convergence of standard
evaluation metrics, the models selected can show inadequate idiom memorisation when
generalisation and memorisation do not temporally align. For high-resource idioms,
models indeed transition to the second phase of emitting memorised paraphrased
translations, but we also identified in chapter 6 that for a wide range of idioms, models
remain in that overgeneralisation phase, emitting overly compositional translations.

Finally, we discussed generalisation not just as quantified using standardised or IID
test sets, but also for compositional generalisation, by redefining three tests from the
literature for the scenario of English-Dutch NMT systems trained on natural language
corpora in chapter 5 (as opposed to synthetically generated datasets as done by most
related work). This allowed us to determine that (7) transformer does not treat
inputs in a locally compositional manner, which might be beneficial for mem-
orisation, but is detrimental for compositional generalisation. Memorisation
of paraphrased idiomatic translations requires treating an idiom as one unit and using
the context to disambiguate whether its meaning is figurative or literal. This stands
in opposition to the notion of strong or local compositionality, where the meanings
of phrases are composed bottom-up. Our NMT systems showed large volatility in
our systematicity and substitutivity tests, which showed translation changes following
small input modifications. This occurred both when the modification was linearly
and syntactically close to changes in the translation (e.g. in the S→NP VP condition of
systematicity), and when the modification was further away (e.g. in the S→S CONJ S

condition of systematicity). That volatility harms the robustness of translation systems,
and, ideally, models should learn to better modulate when to apply local and global
compositional processing.
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Summarising, the findings suggest that while transformer-based models memorise a
great deal about their training data, and that even though this is beneficial given the
natural variation observed in test data, they simultaneously do not memorise enough
of what they should when it comes to formulaic language. Paradoxically, transformer
is not compositional enough and too compositional at once, while locally and globally
compositional strategies would be beneficial for different types of inputs. Mechanisms
for memorisation emerge naturally, but in a dispersed manner throughout many layers,
and these mechanisms are not mature enough to cope with language’s formulaic nature.

Going forward

Based on the findings contained in this thesis, I encourage future work to explore four
directions. Below, I give concrete suggestions for what to focus on and warn about the
potential dangers of state-of-the-art approaches in NLP.

Towards an explicit incorporation of (non-)compositionality That compositional
generalisation does not simply emerge when training standard transformers has been
underscored by the wide range of modelling techniques proposed to improve composi-
tional generalisation (some of which were mentioned in §2.3.2 and §5.5.2). Specialised
architectures that improve upon this are, however, primarily designed with a local
compositionality assumption: meaning can be composed bottom-up. This will improve
compositional generalisation, but can be detrimental for non-compositional generalisa-
tion. I firstly encourage papers on improving compositional generalisation for natural
language to run auxiliary tests on non-compositional phenomena, monitoring situations
in which their method might not be beneficial. Secondly, instead of assuming both types
of generalisation emerge naturally, I encourage modelling techniques that explicitly dis-
tinguish the two types of processing, using separate compositional and non-compositional
representations in line with the two-track mind that has been discussed for humans’
compositional and formulaic processing (van Lancker Sidtis, 2012), or in Baggio (2021)’s
proposal for a parallel mechanism. An example of a technique like that was proposed
by Zeng and Bhat (2023). Even without designing new architectures, the dual nature of
natural language can be explicitly incorporated, e.g. through compositionality-aware
prompting. For the overgeneralised GPT4o-mini idiom translation provided in §6.6.2,
simply varying the prompt in the following three ways yields a correct translation:

• “Translate from English to Dutch, literally translating where possible and figura-
tively translating where needed.”

• “Translate from English to Dutch. First identify the formulaic language contained
in the input, and only then translate.”

• “Translate from English to Dutch. Translate compositionally except for figurative
phrases.”
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Towards memorisation circuits Our attempts at localising the memorisation of misla-
belled examples and examining internal mechanisms that support non-compositional
idiom translations emphasised the distributed nature of memorisation. Similarly, much
of the related work on the implementation of memorisation elaborated on in §2.2 was
focused on identifying the individual layers or even neurons that encode specific infor-
mation, such as a factual relation between named entities. If memorisation is not local,
but a cooperative process of many layers and mechanisms, we should move towards a
more holistic understanding of how memories are encoded from the token embeddings
up to the final layers. In mechanistic interpretability, a wide range of recent studies
have identified circuits that encode a particular phenomenon, such as greater-than
computations in arithmetic (Hanna et al., 2023) and indirect object identification (Wang
et al., 2022). I encourage future work to adopt a similar approach for memorisation.
At first glance, circuit discovery may seem at odds with memorisation, as the success
of the discovery is measured based on the generalisation to new inputs encoding the
same general phenomenon with new instantiations. Yet, with modifications to the
experimental setup, this could be a fruitful way forward, both for memory discovery and
memory editing. One could, for example, measure success as the ability to recall the
memory in various contexts and to improve the recall by modifying activations within
the circuit, while ensuring that compositional variations of a non-compositional memory
do not activate the circuit. If memorisation is not local, neither should localisation,
unlearning, or editing be local.

Towards a memorisation curriculum Research on memorisation in LLMs predom-
inantly emphasises the sheer volume of training examples that LLMs memorise (e.g.
Carlini et al., 2022; Nasr et al., 2023) for both open- and closed-source models, and this
increases as model sizes continue to grow. Alongside research quantifying memorisa-
tion, surveys have appeared that summarise the different memorisation metrics, the
different types of data memorised, and modelling techniques that rely on these findings,
such as privacy-aware training, unlearning or model editing (Hartmann et al., 2023;
Usynin et al., 2024; Wei et al., 2024; Satvaty et al., 2024). The emphasis tends to be
on privacy, security, and copyright risks, with less work on distinguishing beneficial
from harmful memorisation or linking memorisation to task performance. I do not
mean to downplay the risk associated with memorisation, but would like to underscore
that memorisation can be beneficial when it comes to, among other things, formulaic
language, factual information, copyright-free lyrics and books, influential quotes, named
entities and infrequent words and phrases. In an ideal scenario, we would move towards
a memorisation curriculum, pre-identifying what we would and would not want to be
memorised, oversampling the former and obscuring the latter datapoints. This would
be too much to ask for state-of-the-art LLMs, whose pretraining data is unavailable or
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of a scale that virtually makes pretraining modifications infeasible. However, we could
start to move towards this for initiatives with more control over the pretraining corpus,
such as the BabyLM challenge (Warstadt et al., 2023; Hu et al., 2024).

On the dangers of being overly compositional Because frequency influences idiom
acquisition, it is reasonable to assume that scaling pretraining corpora may partly
address transformer’s shortcomings for idioms and non-compositional phrases more
generally. Yet, as discussed in §6.6.2, issues with overly literal translations are still being
reported for commercial and non-commercial (translation) systems, and these issues
will be exacerbated for low-resource languages. I recommend caution when it comes to
reliance on systems to synthesise training corpora (e.g. for the purpose of distilling larger
models into smaller models, Wu et al., 2024), or augment or auto-annotate datasets (e.g.
Ubani et al., 2023; Li et al., 2023, 2024c; Kim et al., 2024). LMs tend to underestimate
probabilities of sequences from the long tail (LeBrun et al., 2022), and when training
repeatedly on model-generated data, LLMs lose information about the long tail of the
original data distribution (Shumailov et al., 2024). As a result, many non-compositional
patterns may risk fading as synthetic data enters general-purpose, internet-based corpora.
In §3.4.2, we noticed a similar issue of overly literal proverb translations in our NMT
training corpus – possibly due to subpar NMT outputs circulating online. Which parts
of natural language are we losing if transformer’s own predictions become a part of
that language? This warrants carefully crafted investigations, such as measuring the
prominence of formulaic language in real and synthesised corpora.
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A.1 Technical setup

Before commencing training, we tokenise the data using the Moses tokeniser,1 and then
compute tokens using BPE2 (Sennrich et al., 2016) to create a joint vocabulary per
language pair, with a size of 64k tokens. Model training was performed using fairseq,
version 0.12.1.3 We train transformer-base models using the following setup, with the
number of total training steps being dependent on the experiment conducted:

• To obtain memorisation scores in §3.2, we trained for 100 epochs on training
datasets of 500k sentence pairs. This involves model training beyond the point of
convergence to investigate memorisation.

• The remaining models discussed are all trained for up to 50 epochs.
We train using the following command, modelled after exemplar Fairseq translation
setups. We did not further tune hyperparameters but did increase max-tokens to better
utilise the GPU capacity.

f a i r s e q −t r a i n <DATA_DIR> \
−−arch <MODEL> −−save−d i r <MODEL_DIR> −−share−a l l −embeddings \
−−fp16 −−max−update 200000 \
−−opt imize r adam −−adam−betas ' ( 0 . 9 , 0 . 9 8 ) ' −−c l i p −norm 0 .0 \
−−l r 0 .0005 −−l r −schedu l e r inve r s e_sqr t \
−−warmup−updates 4000 −−warmup−i n i t −l r '1 e −07' \
−−labe l −smoothing 0 .1 −−c r i t e r i o n label_smoothed_cross_entropy \
−−dropout 0 .3 −−weight−decay 0 .0001 \
−−max−tokens 10000 −−update−f r e q 2 \

1https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
2https://github.com/rsennrich/subword-nmt
3https://github.com/facebookresearch/fairseq
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−−save−i n t e r v a l 50 −−max−epoch <MAXEPOCH> \
−−seed <SEED> −−va l ida t e −i n t e r v a l 5 \
−−eval−bleu −−eval−bleu−args ' { " beam " : 5 } ' −−eval−bleu−remove−bpe

Tesla V100-SXM2-32GB GPUs are used for model training in §3.2. We train each
model on a single GPU, on which one epoch of a 500k training set lasted up to 4 minutes,
and full training approximately 6 hours. Training all seeds for the five language pairs
thus costs 1.2k GPU hours. In §3.6 we train 3 seeds for 54 coordinates using NVIDIA
A100-SXM-80GB GPUs, and the training of one model can take up to 2.5 hours. This
thus cost approximately 400 GPU hours.

Regression models for memorisation proxies In §3.5 we trained MLPs to predict
TM, GS and CM values. The MLPs were trained for 20 epochs maximum, using Adam
according to default hyperparameters in the sklearn.neural_network.MLPRegressor

class. The MLP takes 28 inputs when training with features only, and 28 + 6 when
adding the training signals, and has two hidden layers of 100 units. It predicts TM, GS
and CM at the same time.

A.2 Datasets

We obtain the training data from the Tatoeba repository (version v2021-08-07.md),
postprocessed to obtain parallel corpora as detailed in §3.2. The Tatoeba repository has
the license Attribution-NonCommercial-ShareAlike 4.0 International, which allows
us to use and redistribute the data, given appropriate attribution.

The compound dataset of Tayyar Madabushi et al. (2021) used in §3.4 is available
under the GNU General Public License v3.0 license that allows usage, modification
and distribution. The MAGPIE dataset is available under the Creative Commons

Attribution 4.0 International license.

Datapoints’ surface-level features In §3.3 we analysed how datapoints’ surface-level
features correlate with memorisation metrics. To do so, we compute 28 language-
independent features that, together, we believe cover a broad spectrum of surface-level
features from both the source and target. The following features describe the source
or target length or frequency, and are computed once for white-space tokenisation and
once for BPE tokenisation:

1-4. Source / target length;
5-8. Average log frequency of source / target tokens;

9-12. Minimum log frequency of source / target tokens.

The following features, too, are computed over the source or target only:

https://github.com/Helsinki-NLP/Tatoeba-Challenge/tree/master/data
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13. Number of repetitions of this target. Note that the 1M source sequences are
unique, but there could still be repeated targets if the same target maps to
multiple source sequences;

14,15. Segmentation of the source (or target): 1− ∣sws∣
∣sBP E ∣ , 0 means no segmentation

beyond the token level;
16. Digit ratio: how many digits are included in the source;
17. Punctuation ratio: how many tokens in the source are punctuation.

The remaining features capture source-target interactions:

18. Token-level Levenshtein edit-distance between the source and the target;
19,20. The length ratio between the source and the target: ∣s∣∣t∣ (2x, BPE tokenised

and white space tokenised);
21. Comparison by backtranslation, obtained with Marian-MT models trained on

OPUS by Tiedemann and Thottingal (2020), by computing the token-level
Levenshtein edit-distance between the source and the backtranslated target;

22,23. ∣s∣− ∣t∣ (2x, BPE tokenised and white space tokenised);
24,25. Ratio of unaligned source / target words, alignments are obtained with eflomal

(Östling and Tiedemann, 2016);
26. Alignment monotonicity, computed as the Fuzzy Reordering Score (Talbot

et al., 2011), implementation obtained from Voita et al. (2021);
27. Token overlap: the ratio of tokens from the source that also occur in the target;
28. Word overlap: similar to token overlap, but excluding punctuation.

A.3 Formulaic phrases revisited

In §3.4, we observed that sentences containing formulaic phrases (proverbs, idioms,
non-compositional compounds) have lower TM and GS compared to control stimuli.
However, following the discussion first introduced in §2.3.3 concerning the hypothesis
that non-compositional phrases may have more accurate paraphrased translations than
compositional phrases, we could entertain an alternative hypothesis. What if the
differences are merely due to inadequate evaluation metrics, which cannot properly
quantify the TM or GS scores, due to over-reliance on the exact surface forms of
individual target translations, thus ignoring the existence of paraphrases? The LL
metric is based on target tokens’ probabilities, but if paraphrases exist for a particular
phrase, models may spread the probability mass over multiple paraphrases. In that
scenario, LL would underestimate the memorisation of the underlying meaning of
the formulaic phrase. Although the problem of paraphrased translations not being
adequately assessed by evaluation metrics is not unique to formulaic language, it is
likely exacerbated due to the non-compositional nature of certain formulaic phrases.
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(b) COMET-based

Figure A.1: Differences in memorisation scores (computed using two underlying metrics)
when comparing formulaic stimuli to control stimuli of the same source and target length,
for En-Nl. Error bars show the standard error.

We cannot possibly enumerate all paraphrased translations of a certain phrase to
fully reject this hypothesis. Yet, we can analyse our existing data in a new light. To do
so, we take the generated hypotheses for OPUS training data from the 40 En-Nl models
– the hypotheses were previously used for the BLEU-based memorisation map (§3.3.2) –
and compute TM, GS and CM based on the neural quality estimator COMET-22 (Rei
et al., 2022).4 In this scenario, we thus do not rely on the exact surface-form translation
of a formulaic phrase that was included in the corpus, but rely on the neural quality
estimator that is expected to be aware (to some extent) of the underlying semantics.
Using these new scores, we can again measure the difference between formulaic phrases
and control stimuli, as is displayed in Figure A.1. In this scenario, too, the formulaic
phrases have lower TM and GS scores than control stimuli. The largest differences
are that compositional phrases now score slightly higher than controls, and that the
formulaic stimuli now all have slightly higher CM scores compared to controls. Overall,
this suggests that the difference between formulaic and control stimuli was not simply
due to the LL metric relied on in the main text.

4Specifically, wmt22-comet-da with comet v1.2.0. Note that COMET-based scores are not necessarily
suited for direct comparisons to our memorisation maps; for instance, due to scores of 0 and 1 being
near-impossible to obtain and empty hypotheses receiving non-zero scores. We merely use it to test this
hypothesis, and do not think it can be used to quantify memorisation out of the box.

https://huggingface.co/Unbabel/wmt22-comet-da
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B.1 Technical setup and datasets

We ran the experiments for the 12-layer models on NVIDIA GeForce RTX 1080/2080
Ti GPUs. We train the small models using a batch size of 8 (due to GPU restrictions,
or 4 in the few cases where we still get memory errors, which happens for Reuters, in
particular) and an initial learning rate of 1e-5 for 50 epochs, capping sequences at 512
tokens. 50 epochs is beyond the point of convergence since the aim is to investigate
memorisation rather than optimise models for their generalisation capabilities. For the
models from §4.2.4 where the main task can only modify two layers at a time, we rerun
training with an increased learning rate if the training accuracy does not exceed .99. For
every model trained, we store checkpoint θM1 when the training accuracy exceeds .993,
and store checkpoint θM2 at the end of training. The most time-consuming experiments
are model training and layer retraining:

• §4.2.4: 11 datasets × 3 control setups to obtain θM + 11 datasets × 3 control
setups to obtain θO + 11 datasets × 1 frozen model = 77 setups trained for each
of the 4 models, taking 1 - 6 hours each

• §4.3: 12 datasets × 3 seeds for θM + 12 datasets × 3 seeds for θO + 12 datasets ×
1 frozen model = 84 setups trained for each of the 4 models, taking 1 - 6 hours
each
Layer retraining: 12 datasets × 3 seeds θM × 78 windows = 2808 setups trained
for each of the 4 models, taking 3 to 45 minutes each

The experiments discussed in §4.5.1 are run on NVIDIA A100-SXM80GB GPUs.
OPT-1.3B is trained with an initial learning rate of 5e-6 and a batch size of 32 or
16. We train two models per dataset (θM and θO), and individual training runs take
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45 minutes to 6 hours, depending on the dataset. Visit our codebase here: https:

//github.com/vernadankers/memorisation_localisation.
We use the transformers library1 to obtain the models/tokenisers and train them,

implementing the remaining analyses ourselves.

Models The licenses of all models, which are Apache 2.0 (BERT-base), a custom
license for OPT models2 and the MIT License (Pythia-160m, GPT-Neo-125m) allow non-
commercial use for research purposes.

Datasets The datasets contained in GLUE and SuperGlue are available under li-
cences that allow use and redistribution for research purposes (Wang et al., 2019b,a).
Stormfront is available under CC-by-SA-3.0; ImplicitHate is not explicitly assigned a
license, but the corresponding repository is available under the MIT license; Reuters is
available under the CC-BY-4.0 license; for TREC the license is unknown, and Emotion

should be used for educational and research purposes only, and has no license, otherwise3.

B.2 Postprocessing gradients

As described in §4.2, forgetting gradients are one of the signals we examine to perform
memorisation localisation. We average them over all noisy examples, or over a similar
amount of clean examples. Preliminary experiments indicated that, taken at face value,
the gradients do not necessarily pinpoint the correct layers in a control setup. Using
two validation tasks (MRPC and TREC), we consider taking the L1-norm or the L2-norm
over gradients and applying two ways of normalising the forgetting gradients of the
noisy examples: i) subtract the forgetting gradients of clean examples, ii) normalise the
per-layer norm by the norm obtained using a frozen model. The final post-processing
step applied afterwards is that the weights of the 12 layers are normalised to sum to 1
to allow for the computation of the M-CoG coefficients, and to reduce variation among
tasks.

Figure B.1a illustrates the L1-norm for ‘forgetting’ gradients for a frozen BERT, that
tend to point to the final layers; Figure B.1b and Figure B.1c demonstrate forgetting
gradients for clean and noisy examples in the control setup. Both point to similar layers,
but the norms are higher for noisy examples.

Figure B.1d-B.1g do apply the within-dataset normalisation that normalises layer
weights to sum to one. Figure B.1d again demonstrates for noisy examples that without
further post-processing, the gradients overestimate the relevance of later layers in BERT.
Both post-processing steps i) and ii) dampen that. When measuring the success of the

1https://huggingface.co/docs/transformers
2https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
3https://github.com/dair-ai/emotion_dataset

https://github.com/vernadankers/memorisation_localisation
https://github.com/vernadankers/memorisation_localisation
https://huggingface.co/bert-base-cased
https://huggingface.co/EleutherAI/pythia-160m-deduped
https://huggingface.co/EleutherAI/gpt-neo-125m
https://huggingface.co/datasets/nyu-mll/glue
https://huggingface.co/datasets/aps/super_glue
https://huggingface.co/datasets/odegiber/hate_speech18
https://huggingface.co/datasets/SALT-NLP/ImplicitHate
https://huggingface.co/datasets/rjjan/reuters21578
https://huggingface.co/datasets/CogComp/trec
https://huggingface.co/datasets/dair-ai/emotion
https://huggingface.co/docs/transformers
https://github.com/facebookresearch/metaseq/blob/main/projects/OPT/MODEL_LICENSE.md
https://github.com/dair-ai/emotion_dataset
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Figure B.1: Effect of the gradient analysis postprocessing steps on the MRPC and TREC tasks
for the BERT model when using the L1-norm.

post-processing steps using the accuracy metric, included in Table B.1, the combination
of both is most successful at recovering the layers in which memorisation had taken
place in the control setups, and the L1-norm leads to more accurate results than the
L2-norm.

These post-processing steps improve the accuracy for all models but Pythia. Across
the board, applying both steps i) and ii) and using the L1-norm yields the highest
accuracy, so we apply both of these steps in chapter 4.

Pythia GPT-N BERT OPT

subtracing clean norm. frozen L1 L2 L1 L2 L1 L2 L1 L2

× × 0.08 0.08 0.58 0.25 0.58 0.50 0.58 0.17
× ✓ 0.08 0.08 0.67 0.42 0.50 0.50 0.50 0.42
✓ × 0.08 0.08 0.58 0.25 0.58 0.50 0.67 0.33
✓ ✓ 0.08 0.00 0.75 0.25 0.75 0.58 0.58 0.50

Table B.1: Effect of the gradient analysis postprocessing steps on the MRPC and TREC tasks,
measured as the average accuracy of the highest scoring layers.



Appendix C

Supplementary material for
chapter 5

C.1 Dataset and preprocessing

Training data Our training data contains the English-Dutch subset of the MT cor-
pus OPUS (Tiedemann and Thottingal, 2020). OPUS is a continually growing re-
source; we used the subset as provided by Tiedemann (2020). This dataset contains
69M source-target pairs, and can be found on https://github.com/Helsinki-NLP/

Tatoeba-Challenge/blob/master/data/README-v2020-07-28.md.1

Preprocessing We tokenise the data using the tokenisation script from the SMT
library Moses. Following the number of subwords suggested by Tiedemann (2020), we
generate a subword vocabulary applying 60k BPE merge-operations. To do so, we use
the learn_bpe.py script provided in the subword_nmt repository.

Different corpora We train models on three different sizes of corpora: small, medium
and full. To generate these corpora, we first shuffle the OPUS training data using the
bash function shuffle. To generate the small and medium corpora, we take the first
8582811 and 1072851 sentences of this shuffled corpus, which corresponds to 1

8th and
1
64th of the full training corpus, respectively. For each setting, we train models with
seeds {1, 2, 3, 4, 5}.

Test and validation data Initially, we aimed to evaluate our models using the commonly
used MT test sets OPUS-100 and the test partition of the TED talk corpus. However,
it turned out that both these test sets were almost fully contained in our training
corpus. We, therefore, adopted the newer Flores-101 corpus (Goyal et al., 2022),

1The Tatoeba repository has the license Attribution-NonCommercial-ShareAlike 4.0 International,
which allows us to use and redistribute the data, given appropriate attribution.
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https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/README-v2020-07-28.md
https://github.com/Helsinki-NLP/Tatoeba-Challenge/blob/master/data/README-v2020-07-28.md
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/tokenizer.perl
https://github.com/rsennrich/subword-nmt/blob/master/subword_nmt/learn_bpe.py
http://data.statmt.org/opus-100-corpus/v1.0/supervised/en-nl/
https://github.com/neulab/word-embeddings-for-nmt
https://dl.fbaipublicfiles.com/flores101/dataset/flores101_dataset.tar.gz
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of which we used both the ‘dev’ and the ‘devtest’ set. To compute BLEU scores, we
tokenised the data with the Moses tokenisation script mentioned above, and then used
the commandline script fairseq-generate to compute scores.

We furthermore use several evaluation sets to assess the compositional abilities of
our trained models. The data for these tests, as well as scripts to run them and visualise
the results, can be found in our compositionality_paradox_mt GitHub repository.

Semi-natural templates The semi-natural data that we use in our test sets is generated
with the library DiscoDOP, developed for data-oriented parsing (Van Cranenburgh et al.,
2016). We generate the data with the following seven step process:

Step 1. Sample 100k English OPUS sentences.

Step 2. Generate a treebank using the disco-dop library and the discodop parser

en_ptb command. The library was developed for discontinuous data-oriented parsing.
Use the library’s –fmt bracket to turn off discontinuous parsing.

Step 3. Compute tree fragments from the resulting treebank (discodop fragments).
These tree fragments are the building blocks of a Tree-Substitution Grammar.

Step 4. We assume the most frequent fragments to be common syntactic structures
in English. To construct complex test sentences, we collect the 100 most frequent
fragments containing at least 15 non-terminal nodes for NPs and VPs.

Step 5. Selection of three VP and five NP fragments to be used in our final semi-natural
templates. These structures are selected through qualitative analysis for their diversity.

Step 6. Extract sentences matching the eight fragments (discodop treesearch).

Step 7. Create semi-natural sentences by varying one lexical item and varying the
matching NPs and VPs retrieved in Step 6.

In Table 5.3, we provided examples for each of the ten templates used, along with the
internal structure of the complex NP or VP that is varied in the template.

C.2 Technical setup

As reported in chapter 5, we focus on English-Dutch translation, and all our models
are transformer-base models (Vaswani et al., 2017), as implemented in fairseq (Ott
et al., 2019). Specifically, we used the implementation as it was on May 12, 2021. With
our vocabulary, the models have a total of around 80M trainable parameters.

To train our models, we follow the training procedure suggested by Ott et al. (2018).2

To summarise, we share all embeddings between the encoder and the decoder, use Adam
2https://github.com/facebookresearch/fairseq/tree/d151f2787240cca4e3c7e47640e647f8ae028c37/

examples/scaling_nmt

https://github.com/i-machine-think/compositionality_paradox_mt
https://github.com/andreasvc/disco-dop
https://github.com/pytorch/fairseq/blob/d151f2787240cca4e3c7e47640e647f8ae028c37/fairseq/models/transformer.py
https://github.com/facebookresearch/fairseq/tree/d151f2787240cca4e3c7e47640e647f8ae028c37/examples/scaling_nmt
https://github.com/facebookresearch/fairseq/tree/d151f2787240cca4e3c7e47640e647f8ae028c37/examples/scaling_nmt
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Figure C.1: Distribution of error types for sentences that contain inconsistencies in system-
aticity, detailed per model trained on the training set sizes in the subcaptions.

as optimiser with β-values (0.9, 0.98), starting from an initial warmup learning rate of
1e-07 for 4000 warmup updates and a learning rate of 0.0005 afterwards, using inverse
square root as the learning rate scheduler. We use a clip-norm of 0.0, dropout of 0.3,
weight-decay of 0.0001, label-smoothing of 0.1. The maximum number of tokens in a
batch is 3584, we simulate larger batches by increasing the update frequency to 8. To
determine early stopping, we use a patience of 10 (i.e. we stop training if a model does
not improve on the dev set anymore for 10 epochs, and take the best checkpoint at that
point). Any other hyperparameters involved follow the fairseq default.

Compute The main experiments were ran using Tesla V100 GPUs. Training a
transformer-base model on our small, medium and full datasets takes on average
3.5, 17 and 113 minutes per epoch, respectively, on 32 GPUs. This makes the total
training time for these models, which are trained for around 160, 60 and 30 epochs, 10,
17 and 56 hours, respectively (again, spread over 32 GPUs). In §5.3.3, for the ‘going
further’ discussion, we reproduce the models from the main experiments using one
model seed on NVIDIA GeForce RTX 1080 Ti GPUs, using 4 in parallel. We adjust the
update frequency to simulate the same setup as previously mentioned.

C.3 Manual analysis

In chapter 5, we ran our tests for compositional generalisation. We focused on models’
consistency under input perturbations, but these automated tests could not distinguish
harmful inconsistencies from benign ones. We complemented these tests with an
elaborate manual analysis, which provided more insight into the nature of the non-
compositional behaviour we registered. We previously included the setup for this analysis
and a summary of the results in §5.4. This section further elaborates on the results.

We include the results in Figure C.1 for systematicity and Figure C.2 for substitutivity.
As a general trend, the results reflect that in models trained on smaller datasets,
more mistakes are actually errors, rather than multiple correct alternatives. In the



Appendix C. Supplementary material for chapter 5 178

sy
nt

he
tic

se
m

i-n
.

na
tu

ra
l0

25

50

75

100

%

(a) Small training set

sy
nt

he
tic

se
m

i-n
.

na
tu

ra
l0

25

50

75

100

%
(b) Medium training set

sy
nt

he
tic

se
m

i-n
.

na
tu

ra
l0

25

50

75

100

%

1 untranslated
1 mistranslated
2 mistranslated
different translations
errors
rephrasing
ambiguities
formatting

(c) Full training set

Figure C.2: Distribution of the types of inconsistencies observed in the substitutivity test,
detailed per model trained on the training set sizes in the subcaptions. The purple colour
scheme represents error types specific to this experiment.

systematicity test, 59% of the inconsistencies for the models trained on the smallest
dataset are erroneous changes, versus 34% and 27% in the models trained on the
medium and largest datasets, when we average the percentages over the different
subsets annotated. For substitutivity, the percentage of erroneous changes unrelated to
the synonyms comprises 46%, 18% and 22% for the small, medium and full datasets,
respectively. On top of that, there were inconsistencies related to the synonyms, which
represented 26%, 26% and 21% for the three dataset sizes, respectively. While this is
expected, to some extent, it still constitutes a problem: for models trained on smaller
amounts of data, being able to translate in a compositional manner is particularly
relevant. Below, we further elaborate on the types of inconsistencies encountered per
annotation category, including some examples.

Rephrasing A large portion of the inconsistencies concerns pairs where one translation
can be considered a rephrased version of the other translation. A common cause of
this is a reordering of words that does not impact the grammaticality or meaning of
the Dutch sentence – e.g. in sentences with adverbs (“heeft de burgemeester zeker in
de gaten” vs “heeft zeker de burgemeester in de gaten”) or relative clauses with direct
objects (“die genieten van de vakantie” vs “die van de vakantie genieten”). We could
not trace these reorderings back to the specific change made in the systematicity or
substitutivity tests. Consider, for instance, Example (1), where the reordering happens
as a consequence of changing the word “king” to “father”. Note also that while these
translations both contain an error (“neemt . . . in de gaten”), this is not marked as an
inconsistency, because it is shared between the translations.

(1) s En: The aunts criticise the {king, father}, and the man definitely observes the
mayor.

t1 Nl: (. . . ) en de man neemt zeker de burgemeester in de gaten.
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t2 Nl: (. . . ) en de man neemt de burgemeester zeker in de gaten.

Another common type of rephrasing is one where the two translations include (nearly)
synonymous terms in Dutch. Some examples are the translations of athlete (“sporter”
vs “atleet”), wish (“wensen” vs “willen”) and observe (“observeren” vs “waarnemen”).
Some of them can appear in the same context but for others the two words would
typically appear in different contexts. For instance, the word “dokter” is used in more
informal contexts than the word “arts” (both translations of “doctor”). Again, we could
not identify an interpretable pattern for when the model emits one instead of the other.

Source ambiguities An intriguing category that we had not anticipated were cases
in which the source sentence contained ambiguities, such as polysemous words
(e.g. “director” translated to “directeur”, referring to the director of a company, and
“regisseur”, indicating the director of a movie). Other ambiguities encountered were
scope ambiguities, which were particularly prominent for the systematicity test. In
that test, we concatenate two sentences, and the ambiguity was often related to the
verb in the first sentence – e.g. in “The friend wishes that the {lawyers, directors}
scream, and the victims (. . . )”. While we intended this to be a conjunction of two
independent sentences, there is also a reading where “wishes” takes scope over the entire
second conjunct. In Dutch, those two cases are distinguishable because they trigger
a different word order in the embedded clause (SOV), which is not grammatical for
main clauses. Such scope changes often lead to very questionable interpretations of the
English sentence, as is the case for the source sentences in Example (2):

(2) s1 En: The victims want that the {doctors, mayors} run, and the victims read an
article about the case of a procedure which includes a repayment plan.

s2 En: The women wish that the {painters, victims} walk consciously, and every
2CV or Dyane can basically be used as a donor.

Interestingly, we also observed SOV word order in the second conjunct when a scope
change was not possible, for instance, when the second conjunct was a question, or the
verb in the first sentence did not allow to take scope over the second conjunct without
the presence of the word “that”. See Example (3). We underline the incorrect part of
the translation, here and in erroneous examples that follow. These examples indicate
that the interpretation of scope change might not be applicable here and that instead,
the model is applying some heuristic where particular words trigger an SOV order.

(3) s En: The victim observes the {leader, king}, and the fathers carefully avoid the
president.

t1 Nl: Het slachtoffer observeert de leider en de vaders
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de president zorgvuldig vermijden.
t2 Nl: Het slachtoffer observeert de koning en de vaders vermijden voorzichtig de

president.

Single word target errors In the category ‘target errors’, single-word errors are often
due to missing, wrongly translated or untranslated words. Changes due to missing
words can be very minor but nevertheless render one of the translations ungrammatical
(e.g. “De tante achter de truck bewonderde de directeur”, correct, vs “De tante achter
de truck bewonderde directeur”, incorrect), or semantically incorrect. Untranslated
source words being present in one of the two translations occurred for our synthetic
templates (e.g. “uncles”/“ooms”, “butchers”/“slagers”) but also with words from the
natural sentences (e.g. “extrusion”/“extrusie”, “soils”/“bodem”). Lastly, we observed
cases of mistranslated words, where words unrelated to the input perturbation
received a wrong translation in one of the two sentences but a correct one in the other,
for example: “poets” being translated as “dichters” (correct) vs “de potten” (incorrect),
or “general” as “generaal” (correct) vs “wandeling” (incorrect).

Multi-word target errors Other types of errors are less easily located to individual
words but indicate an overall misinterpretation of the input, such as the change in
agreement displayed in Example (4). In this particular case, the source of confusion
is explainable: “begrijpen” should agree with “schilder” but instead agrees with the
word “doctors”, much earlier in the sentence. A more locally compositional approach to
translating would have yielded the correct translation.

(4) s En: The doctors that laugh admire the {president, baker}, and the painter that
admires her understands the king.

t1 Nl: (. . . ) de schilder die haar bewondert, begrijpen de koning.
t2 Nl: (. . . ) de schilder die haar bewondert begrijpt de koning.

Another example of a multi-word error relates to the semantic role assigned to
agents. For instance, in Example (5), “the fathers” is removed from the main clause
and moved into the relative clause, leaving “read” without its agent.

(5) s En: The group of painters behind the truck forgets the {president, friend} and
an article about the previous EESC Opinion on alcohol related harm, which
looked at f, is read by the fathers.

t1 Nl: (. . . ) en een artikel over het eerdere advies van het EESC over alcoholgere-
lateerde schade, die door de vaders wordt onderzocht, wordt gelezen.

t2 Nl: (. . . ) en een artikel over het eerdere advies van het EESC over alcoholgere-
lateerde schade, die naar f uitkeek, wordt door de vaders gelezen.
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Formatting We marked inconsistencies as formatting changes if they were related
to punctuation, capitalisation, hyphenation or the usage of spaces. Most of these
inconsistencies were related to comma usage: in one translation, a relative clause or two
conjuncts were separated by a comma, whereas in the other translation the comma was
left out. When it comes to space usage (“tumormassa” vs “tumor massa”), there is a
slight difference in correctness: in Dutch, compound nouns are not separated by spaces.
Given how minor these mistakes are, we did not mark them as errors. Example (4)
above provides an example for inconsistent usage of commas. Formatting changes are,
relatively speaking, more prominent in models trained on larger training corpora.

Inconsistencies in synonym translations The synonym errors are subdivided into
cases where synonyms are simply translated differently (we observed this mostly for
the models with larger training set sizes), cases where both translations were incorrect,
cases in which only one translation is wrong, and cases in which one synonym was not
translated but directly copied from the source. Sometimes, the changes were quite
peculiar, to give some examples from our natural corpus:

(6) s En: The child admires the king that eats the {doughnut, donut}.
t1 Nl: Het kind bewondert de koning die de donut eet.
t2 Nl: Het kind bewondert de koning die de ezel eet.

(7) s En: - Yeah, a barbecue sauce {moustache, mustache} contest.
t1 Nl: - Ja, een barbecue [missing ‘sauce’] met snor [missing ‘contest’].
t2 Nl: - Ja, een barbeceu saus snor wedstrijd.

Some synonyms often remain untranslated (for “ladybird”, “flautist”), some receive many
different correct translations (for “shopping trolley”), yet others have very synonym-
specific inconsistencies (e.g. “eggplant” being translated as “egg”+“plant”, an interesting
case because it reflects processing that is too local). For all synonyms – except for the
model with the small training set that cannot translate “flautist” and “ladybug” – we
have observed correct translations.

Further, it should be noted that while our substitutivity experiment provides insight
into how the model copes with individual synonyms, the majority of the inconsistencies
observed were unrelated to the synonym substitution. For instance, considering that
the synonym changes were related to British and American spelling, and occasionally
changed the tone of the sentence (e.g. “aeroplane” could be considered more archaic than
“airplane”), one could anticipate changes in word choice in Dutch reflecting this change
of style. However, the substitutivity inconsistencies were virtually indistinguishable
from those annotated for systematicity.



Appendix D

Supplementary material for
chapter 6

D.1 Technical setup and the dataset

The code for the analyses, along with a modified implementation of the models to
allow for our analyses, is available via the mt_idioms GitHub repository. The models
were pretrained by Tiedemann and Thottingal (2020) with the Marian-MT framework
(Junczys-Dowmunt et al., 2018). The models are available via the Huggingface hub:

1. https://huggingface.co/Helsinki-NLP/opus-mt-en-nl

2. https://huggingface.co/Helsinki-NLP/opus-mt-en-de

3. https://huggingface.co/Helsinki-NLP/opus-mt-en-da

4. https://huggingface.co/Helsinki-NLP/opus-mt-en-sv

5. https://huggingface.co/Helsinki-NLP/opus-mt-en-fr

6. https://huggingface.co/Helsinki-NLP/opus-mt-en-es

7. https://huggingface.co/Helsinki-NLP/opus-mt-en-it

The translations and the corresponding attention patterns and hidden representations
were extracted using a NVIDIA GeForce GTX 1080 Ti GPU; the remaining analyses
are performed using CPUs only.

The MAGPIE dataset is available via the MAGPIE GitHub repository. The dataset is
available under the Creative Commons Attribution 4.0 International license.

When applying COMET, we use wmt22-comet-da, using Comet v1.2.0.

D.2 Survey details

D.2.1 Crowd-sourcing annotations for Dutch

In an early phase of the research, the quality of the heuristic annotation method was
estimated through a survey conducted using the Qualtrics platform by annotators from
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https://github.com/vernadankers/mt_idioms
https://huggingface.co/Helsinki-NLP/opus-mt-en-nl
https://huggingface.co/Helsinki-NLP/opus-mt-en-de
https://huggingface.co/Helsinki-NLP/opus-mt-en-da
https://huggingface.co/Helsinki-NLP/opus-mt-en-sv
https://huggingface.co/Helsinki-NLP/opus-mt-en-fr
https://huggingface.co/Helsinki-NLP/opus-mt-en-es
https://huggingface.co/Helsinki-NLP/opus-mt-en-it
https://www.github.com/hslh/magpie-corpus
https://huggingface.co/Unbabel/wmt22-comet-da
https://www.qualtrics.com/
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MAGPIE Predicted Translations
Paraphrase Word for word* Copy*

# % agr # % agr # % agr

Figurative 96 86 84 64 84 77 24 83 58
Literal 32 73 59 64 91 80 24 69 88

Table D.1: Survey statistics: the number of sentence pairs used (#), the % of labels the
algorithm and annotators agreed on, and inter-annotator agreement. Agreement means an
average of 4 annotators agreed on the label unanimously. *Categories merged in chapter 6.

Prolific. These annotators were native speakers of Dutch and fluent in English. To guard
the quality of the data collection, participants went through a pre-screening process
that consisted of a shorter version of the survey with three practice questions and seven
regular questions. Participants were selected for the full study if they correctly answered
practice questions, used all three of the labels (paraphrase, word for word, copy), and
did not choose ‘copy’ if the keyword was clearly absent from the translation. The main
survey consisted of three parts: (1) An explanation of what an idiom is, of potential
literal and figurative usage of PIEs, the meaning of the three labels, and the format to
be used in the study. (2) One practice exercise where three potential translations of one
sentence had to be connected to the correct label. (3) Lastly, 38 questions were filled
out: 12 instances that were figurative and were paraphrased by the model, 4 literal
instances paraphrased by the model, 8 literal instances that were translated word for
word, 8 figurative instances that were translated word for word, 6 copies (3 figurative, 3
literal).

If the participant indicated that it was a word-for-word translation, a follow-up
question asked the participant to indicate the keyword’s literal translation. We repeated
the instruction of what constitutes a word-for-word translation since participants would
often select the (conventionalised) idiomatic translation in the pre-screening phase – e.g.
“handbereik” for “fingertips”, for which a literal translation would be “vingertoppen”.

Table D.1 summarises the results. The annotators and the heuristic method agreed in
83% of the cases. For 77% of examples, the annotations agreed on the label unanimously.

D.2.2 Collecting annotations for seven languages

Later on, the analyses were applied to heuristically annotated data for all seven languages.
Postgraduate students from the University of Edinburgh were invited to annotate the
data in exchange for payment, where one annotator annotated all 350 samples for
a language. To reduce the cognitive load of the experiment, only sentences with ≤
40 tokens were shown to the participants. The annotators were native speakers of
the target language and were fluent in English, with the exception of the Swedish

https://www.prolific.com/
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Question
The following sentence contains “at your fingertips”:
“Using the latest in audio visual technology, the wonders of these six fascinating
‘worlds’ are at your fingertips."

Now categorise the translation of the red word from above in this sentence:
“Met behulp van de nieuwste audio visuele technologie, zijn de wonderen van deze zes
fascinerende werelden binnen handbereik.”
○ paraphrase
○ word-by-word
○ copy

Follow-up question
If you did not select ‘word for word’, leave blank.
What is the translation of the red keyword in “at your fingertips” in the sentence below:
(. . . insert sentence. . . )
(. . . free text response box. . . )

Table D.2: Format of the questions shown to participants via the Qualtrics platform.

speaker, who was a native speaker of Norwegian and Finnish and fluent in Swedish
and English. The annotators participated in a similar pre-screening test with language-
specific explanations and examples, and seven practice questions. If the annotators’
answers differed from what was expected, the instructions were discussed with the
annotator before they proceeded with the full survey, and they filled out the remainder
of the survey without intermediate help or instructions. Table D.2 shows an example
question for Dutch. We previously discussed the results of this survey in §6.2.

D.2.3 Ethical considerations

The two aforementioned surveys were both approved through the university’s research
ethics process (applications 2019/83180 and 2021/44709, respectively), where an inde-
pendent committee assessed the setup of the survey, the research’s potentially harmful
impacts and the compensation for the participants. In collecting data annotations,
participants were shown data from the MAGPIE corpus, available under the CC-BY-4.0
License. All other information shown to them was either collected from the compu-
tational model or written up by the authors. Any identifiable information about the
participants was stored separately from the participants’ annotations, for the pur-
pose of compensation. Participants provided informed consent to data collection and
anonymised data being used in academic publications. They were given the opportunity
to withdraw at any time. Participants were compensated above the minimum hourly
wage of the country in which they were residents when participating in the study.
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Figure D.1: Illustration of the impact of recomputing CCA with data subsets of differently
composed vocabularies for a dataset size of 5k.

D.3 Two-step CCA

CCA can be used to compare representations over different layers of the same network
or different networks in a way that is invariant to affine transformations (Raghu et al.,
2017). The CCA similarity expresses the extent to which two representations contain
the same information while accounting for transformations in the two views of the
data. Nonetheless, the similarity depends on the data used to perform CCA. Even
with a dataset that is at least an order of magnitude larger than the dimensions in the
hidden representations, the composition of the dataset affects the outcome. Particularly
relevant in the context of our work is the vocabulary size.

We illustrate this by measuring how hidden representations change over layers,
randomly sampling tokens and considering multiple dataset compositions, varying from
64 occurrences of 80 unique tokens, to 4 occurrences of 1280 unique tokens. Recomputing
CCA per subset yields the similarities shown in Figure D.1a. Although the overall
pattern of lower similarity between lower layers and higher similarity between higher
layers is present for all subsets, the absolute similarity measures differ between subsets.
In Figure D.1b, however, where the projection matrix is computed on a separate dataset,
subsets show comparable similarities. The differences between the methods decrease as
the number of hidden representations used to perform CCA grows.

Performing CCA separately per (relatively small) subset of the MAGPIE corpus
could thus reflect vocabulary differences rather than systematic differences due to
figurativeness. We merely want to apply CCA to account for differences between layers
and differences with and without masking attention, and thus apply two-step CCA,
computing projection matrices on a separate dataset.
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